Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Development of Greenhouse Gas Emissions Model (GEM) for Heavy- and Medium-Duty Vehicle Compliance

2015-09-29
2015-01-2771
In designing a regulatory vehicle simulation program for determining greenhouse gas (GHG) emissions and fuel consumption, it is necessary to estimate the performance of technologies, verify compliance with the regulatory standards, and estimate the overall benefits of the program. The agencies (EPA/NHTSA) developed the Greenhouse Gas Emissions Model (GEM) to serve these purposes. GEM is currently being used to certify the fuel consumption and CO2 emissions of the Phase 1 rulemaking for all heavy-duty vehicles in the United States except pickups and vans, which require a chassis dynamometer test for certification. While the version of the GEM used in Phase 1 contains most of the technical and mathematical features needed to run a vehicle simulation, the model lacks sophistication. For example, Phase 1 GEM only models manual transmissions and it does not include engine torque interruption during gear shifting.
Technical Paper

Using Model-Based Rapid Transient Calibration to Reduce Fuel Consumption and Emissions in Diesel Engines

2008-04-14
2008-01-1365
Minimizing fuel consumption is emerging as the next major challenge for engine control and calibration, even as the requirements of complying with ever lower transient emissions regulations cannot be underestimated. Meeting these difficult and apparently conflicting emissions and efficiency goals is becoming increasingly onerous as engine and aftertreatment control complexity increases. Conventional engine calibration techniques are by nature time-intensive, ad-hoc and repetitive, resulting in low productivity of test facilities and engineering effort. Steady state engine mapping methods, such as design of experiments, do little to ensure transient emissions compliance or fuel consumption optimization. A new model-based Rapid Transient Calibration system has been developed, tested and validated using a 2007 production-specification Detroit Diesel Series 60 heavy-duty diesel engine.
X