Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Motorcycle Emission Profiles in Bandung City, Indonesia

2017-11-05
2017-32-0076
Motorcycles account for almost 80% of private vehicles in Indonesia, with an annual growth rate of 12% per year. This paper aims to investigate the emission profiles of CO2, CO, HC and NOx based on typical fuel and motorcycle types in Indonesia. Questionnaire surveys were undertaken to gather fuel type, engine technology and capacity representing the motorcycle population in Bandung City, Indonesia. Emissions were measured based on six-speed variations on a chassis dynamometer. Questionnaire surveys from 290 respondent show that EURO II and EURO III technology with engine capacity less than 150cc is the most utilized type of motorcycle in Bandung. Most of the users’ chose RON 90 and RON 92 gasoline. Based on the results, four groups of 5 motorcycle of EUROII-RON90, EUROII-RON92, EUROIII-RON90, and EUROIII-RON92 were tested. Emission data showed that the higher the speed, the lower the emission, except for CO and NOx which have a different pattern.
Technical Paper

Time-Resolved Nature of Exhaust Gas Emissions and Piston Wall Temperature Under Transient Operation in a Small Diesel Engine

1996-02-01
960031
Diesel combustion and exhaust gas emissions under transient operation (when fuel amounts abruptly increased) were investigated under a wide range of operating conditions with a newly developed gas sampling system. The relation between gas emissions and piston wall temperatures was also investigated. The results indicated that after the start of acceleration NOx, THC and smoke showed transient behaviors before reaching the steady state condition. Of the three gases, THC was most affected by piston wall temperature; its concentration decreased as the wall temperature increased throughout the acceleration except immediately after the start of acceleration. The number of cycles, at which gas concentrations reach the steady-state value after the start of acceleration, were about 1.2 times the cycle constant of the piston wall temperature for THC, and 2.3 times for smoke.
X