Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Prediction of Aircraft Safety Performance in Complex Flight Situations

2003-09-08
2003-01-2988
A generic situational model of the “pilot (automaton) - aircraft - operational environment” system is employed as a ‘virtual safety test article’. The goal is to identify a priori potentially catastrophic, safe and interim developments in the system behavior in complex (multi-factor) flight situations. Distinguishing features of the technique include: affordability and autonomy of experimentation (a pilot and special hardware are not required), easy planning and fast-time simulation of a large number of non-standard flight scenarios on a computer, and automated assessment and classification of ‘flights’ using formalized safety criteria. A software tool called VATES, which implements this technique, is demonstrated. Several new graphic-analytical formats designed for system safety knowledge mapping are introduced using realistic situation examples.
Technical Paper

Analysis of Aerobatic Flight Safety Using Autonomous Modeling and Simulation

2000-04-11
2000-01-2100
An affordable technique is proposed for fast quantitative analysis of aerobatics and other complex flight domains of highly maneuverable aircraft. A generalized autonomous situational model of the “pilot (automaton) – vehicle – operational environment” system is employed as a “virtual test article”. Using this technique, a systematic knowledge of the system behavior in aerobatic flight can be generated on a computer, much faster than real time. This information can be analyzed via a set of knowledge mapping formats using a 3-D graphics visualization tool. Piloting and programming skills are not required in this process. Possible applications include: aircraft design and education, applied aerodynamics, flight control systems design, planning and rehearsal of flight test and display programs, investigation of aerobatics-related flight accidents and incidents, physics-based pilot training, research into new maneuvers, autonomous flight, and onboard AI.
Technical Paper

A Method for Accident Reconstruction and Neighborhood Analysis Using an Autonomous Situational Model of Flight and Flight Recorder Data

1999-04-13
1999-01-1434
Flight accidents with modern aircraft are often a result of complex dynamics of the “pilot (automaton1) - vehicle - operational environment” system. When a “critical mass” of the system’s complexity exceeds a certain level, a “chain reaction” of irreversible cause-and-effect links can be spontaneously triggered in the system behavior leading to a catastrophe. An affordable, practically tested technique is proposed to complement current methods of flight accident analysis. A generic situational model of the system behavior and a computer are employed as a virtual test article. This model includes a six-degree-of-freedom non-linear flight dynamics model, a generic situational pilot model (“silicon pilot”), models of anticipated operational factors (conditions), and a tool for flight scenario planning. Available flight recorder data are used to tune the model and reconstruct the accident.
X