Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Effect of Strain Rate on the Sheet Tensile Properties and Formability of Ferritic Stainless Steels

2003-03-03
2003-01-0526
High strain rate sheet tensile tests (up to 300s-1) and Ohio State University (OSU) formability tests (up to an estimated strain rate of 10s-1) were performed to examine the effect of strain rate on the mechanical properties and formability of five ferritic stainless steels: HIGH PERFORMANCE-10™ 409 (HP-10 409), ULTRA FORM® 409 (UF 409), HIGH PERFORMANCE-10™ 439 (HP-10 439), two thicknesses of 18 Cr-Cb™ stainless steel, all supplied by AK Steel, and Duracorr®, a ferrite-tempered martensite dual-phase stainless steel supplied by Bethlehem Steel Corporation. Tensile results show that increasing strain rate resulted in increases in yield stress, flow stress, and stress at instability for all alloys tested. In addition, increases in uniform and total elongation were also found for each of the five alloys.
Technical Paper

Sheet Steel Surface Treatments for Enhanced Formability

1994-03-01
940945
Surface friction is an important characteristic which influences the formability of sheet steel products. Numerous friction tests have been developed, and many previous investigations have reported effects of surface characteristics, coatings, lubrication, etc., on formability. Recently, increased attention has been focussed on reducing friction via the application of solid film lubricants or special surface post-treatments such as phosphates, metallics/intermetallics, etc. This paper presents the results of selected laboratory evaluations conducted using a variety of steels and surface treatments. Formability was measured using Limiting Dome Height and Drawbead Simulator friction testing, along with Limiting Draw Ratio testing in one instance. The examples highlight some potential opportunities which may be considered for improving formability in industrial stamping operations.
X