Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Results from NHTSA's Experimental Examination of Selected Maneuvers that may Induce On-Road Untripped, Light Vehicle Rollover

2001-03-05
2001-01-0131
This paper summarizes the results of test maneuvers devised to measure on-road, untripped, rollover propensity. Complete findings from this research are contained in [1]. Twelve test vehicles, representing a wide range of vehicle types and classes were used. Three vehicles from each of four categories: passenger cars, light trucks, vans, and sport utility vehicles, were tested. The vehicles were tested with vehicle characterization and untripped rollover propensity maneuvers. The vehicle characterization maneuvers were designed to determine fundamental vehicle handling properties while the untripped rollover propensity maneuvers were designed to produce two-wheel lift for vehicles with relatively higher rollover propensity potential. The vehicle characterization maneuvers were Pulse Steer, Sinusoidal Sweep, Slowly Increasing Steer, and Slowly Increasing Speed. The rollover propensity maneuvers were J-Turn, J-Turn with Pulse Braking, Fishhook #1 and #2, and Resonant Steer.
Technical Paper

Analysis of Vehicle Response Data Measured During Severe Maneuvers

2000-05-15
2000-01-1644
During the past few years, the National Highway Traffic Safety Administration's (NHTSA) Vehicle Research and Test Center has generated a plethora of reliable vehicle test data during their efforts to study vehicle rollover propensity. This paper provides further analyses of a small selection of some of the data. The analyses provided here derive in part from the previous work, trying to answer some of the questions spawned by earlier analyses. The purpose of this paper is to introduce several new concepts to the study of vehicle roll stability and provide case studies using the results available from the NHTSA testing. Results from several severe maneuvers are studied in detail to gain understanding of vehicle response in these cases.
Technical Paper

Assessment of Dynamic Testing Environment of Child Restraint Systems

1993-11-07
933134
This paper summarizes the results of research conducted by the National Highway Traffic Safety Administration (NHTSA) to determine how changing vehicle design parameters influence child restraint performance. Initial research consisted of surveying late-model vehicles' interior design characteristics as they pertain to child restraint systems. The next step involved dynamic evaluation of booster seats with respect to injury/excursion criteria measured on child test dummies under conditions which illustrated the changing vehicle design characteristics. Belt-positioning booster seat tests were conducted to evaluate the effect of belt type (lap/shoulder belt vs lap only belt) on seat performance. Differences in small-shield booster behavior when used with lap only belt or laplshoulder belt combinations were established in another series of tests. Another study demonstrated how varying seat back rigidity changed small-shield booster test results.
Technical Paper

Development of a Featureless Free-Motion Headform

1991-10-01
912909
The National Highway Traffic Safety Administration (NHTSA) is currently conducting research at the Vehicle Research and Test Center (VRTC) aimed at reducing the number of serious and fatal head injuries due to impact with vehicle upper interior structures. A modified Hybrid III dummy head is currently used to test head injury potential from impacts with vehicle upper interior structures. This headform is propelled into vehicle upper interior structures with the front of the head facing the structure. Head impacts with A-pillars, side roof rails, and B-pillars may occur without the vehicle occupant facing directly into the structure. Since this is the case, it was decided that a featureless free-motion headform should be developed. This headform would not give the appearance of a forehead impacting the side structures of the vehicle. This paper will present the design, development, and testing of a featureless free-motion headform.
X