Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Fuel Economy Improvement Through Frictional Loss Reduction in Light Duty Truck Rear Axle

2002-10-21
2002-01-2821
In an effort to improve fuel economy for light duty trucks, an initiative was undertaken to reduce frictional losses in rear axle through use of low friction lubricants and novel surface finish on gears while maintaining durability. This paper describes the effect of rear axle lubricants on fuel economy. A laboratory rig was set up using a full size pick-up truck rear axle to measure axle efficiency and lubricant temperature with various SAE 75W-90 and SAE 75W-140 viscosity grade lubricants. Traction coefficients of lubricants were also measured at various temperatures using a laboratory ball and disk contact geometry. An improvement in axle efficiency up to 4.3% was observed over current Ford factory fill SAE 75W-140 lubricant depending on speed, torque and the type of lubricant used. The temperature of the lubricants was also lower than that with the current factory fill. This is important for maintaining bearing life and overall durability of the rear axle.
Technical Paper

Viscosity Prediction for Multigrade Oils

1993-10-01
932833
The variation of viscosity with temperature and shear rate plays an important role in the analysis of lubrication of automotive systems. In this paper, a method for predicting the viscosity of non-Newtonian fluids, such as multigrade engine oils, over a wide range of temperatures and shear rates is outlined. This expression determines viscosity parameters for shear thinning fluids in terms of easily measured viscosity values at some reference state. A comparison of predictions with experimental data suggests that viscosity for multigrade engine oils can be predicted to within experimental uncertainty. The proposed method can be used in assessing lubricant viscosity at shear rates greater than 106 s-1, which are beyond the capability of current laboratory instruments. A comparative study with multigrade oils shows that performance at very high shear rates cannot be accurately gauged from high temperature, high shear (HTHS) viscosity measurements.
X