Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Numerical Study of the Generation of Linear Energy Transfer Spectra for Space Radiation Applications

2006-07-17
2006-01-2144
In analyzing charged particle spectra in space due to galactic cosmic rays (GCR) and solar particle events (SPE), the conversion of particle energy spectra into linear energy transfer (LET) distributions is a convenient guide in assessing biologically significant components of these spectra. The mapping of LET to energy is triple valued and can be defined only on open energy subintervals where the derivative of LET with respect to energy is not zero. Presented here is a well-defined numerical procedure which allows for the generation of LET spectra on the open energy subintervals that are integrable in spite of their singular nature. The efficiency and accuracy of the numerical procedures is demonstrated by providing examples of computed differential and integral LET spectra and their equilibrium components for historically large SPEs and 1977 solar minimum GCR environments. Due to the biological significance of tissue, all simulations are done with tissue as the target material.
Technical Paper

JOVIAN ICY MOON EXCURSIONS: Radiation Fields, Microbial Survival and Bio-contamination Study

2004-07-19
2004-01-2327
The effects of both the cosmic ray heavy ion exposures and the intense trapped electron exposures are examined with respect to impact on cellular system survival on exterior spacecraft surfaces as well as at interior (shielded) locations for a sample mission to Jupiter’s moons. Radiation transport through shield materials and subsequent exposures are calculated with the established Langley heavy ion and electron deterministic codes. In addition to assessing fractional DNA single and double strand breaks, a variety of cell types are examined that have greatly differing radio-sensitivities. Finally, implications as to shield requirements for controlled biological experiments are discussed.
Technical Paper

Radiation Exposure Analysis for ISS: The Female Astronaut in EVA

2003-07-07
2003-01-2350
Special exposure limit recommendations have been designated by the National Council on Radiation Protection (NCRP) for U. S. astronauts in low earth orbit (LEO) operations. These have been established from consideration of a 3% lifetime excess risk of cancer mortality for a 10-yr. active career. The most recent recommendations of the National Council on Radiation Protection and Measurements (NCRP) have incorporated modified procedures for evaluating exposures with accompanying adjustments in career limits. Of special importance are the limit specifications for female exposures, which are approximately 40% less than those for males. Furthermore, radiosensitive organs unique to females require additional attention.
Technical Paper

Let Analyses of Biological Damage During Solar Particle Events

1991-07-01
911355
Solar particle events (SPE) are typically dominated by high-energy, low-linear energy transfer (LET) protons. Biological damage to astronauts during an SPE is expected to include a large contribution from high LET target fragments produced in nuclear reactions in tissue. We study the effects of nuclear reactions on integral LET spectra, behind typical levels of spacecraft and body shielding, for the historically largest flares using the high-energy transport code, BRYNTRN in conjunction with several biological damage models. The cellular track model of Katz provides an accurate description of cellular damage from heavy ion exposure. The track model is applied with BRYNTRN to provide an LET decomposition of survival and transformation rates for solar proton events.
Technical Paper

Preliminary Analyses of Space Radiation Protection for Luner Base Surface Systems

1989-07-01
891487
Radiation shielding analyses are performed for candidate lunar base habitation modules. The study primarily addresses potential hazards due to contributions from the galactic cosmic rays (heavy ions). The NASA Langley Research Center's high energy nucleon and heavy ion transport codes are used to compute propagation of radiation through conventional and regolith shield materials. Computed values of linear energy transfer are converted to biological dose-equivalent using quality factors established by the International Commission on Radiological Protection. Spectral fluxes of heavy charged particles and corresponding dosimetric quantities are computed for a series of thicknesses in various shield media and are used as an input data base for algorithms pertaining to specific shielded geometries. Dosimetric results are presented as isodose contour maps of shielded configuration interiors.
X