Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Design and Evaluation of Emergency Driving Support Using Motor Driven Power Steering and Differential Braking on a Virtual Test Track

2013-04-08
2013-01-0726
This paper presents the design and evaluation of an emergency driving support (EDS) algorithm. The control objective is to assist driver's collision avoidance maneuver to overcome a hazardous situation. To support driver, electrically controllable chassis components such as motor driven power steering (MDPS) and differential braking and surrounding sensor systems such as radar and camera are used. The EDS algorithm is designed for 3 parts: monitoring, decision, and control. The proposed EDS algorithm recognizes a collision danger using minimum lateral acceleration to avoid collision and time-to-collision (TTC) and driver's intention using sensor systems. The control mode is determined using the indices from monitoring process and the collision avoidance trajectory is derived with trapezoidal acceleration profile (TAP).
Technical Paper

An Experimental Investigation of a CW/CA System for Automobiles

1999-03-01
1999-01-1238
CW/CA (Collision Warning /Collision Avoidance) Systems have been an active research and development area as interests and demands for the advanced vehicle increase. A CW/CA ‘Hardware-in-the-Loop Simulation (HiLS)’ system has been designed and used to test a CW/CA algorithm, radar sensors, and warning displays under realistic operating conditions in the laboratory. A CW/CA algorithm has two parts. One is a distance decision algorithm that determines the critical warning and braking distance and the other is a brake control algorithm for collision avoidance. The CW/CA HiLS system consists of a controller in which a DSP chip is installed, a preceding vehicle simulator, a radar sensor and a warning display. The controller calculates velocities of the preceding and following vehicles, relative distance and relative velocity of the vehicles using vehicle simulation models. The relative distance and velocity are applied to the vehicle simulator that is controlled by a DC motor.
X