Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Formula SAE Chassis Design to Improve Suspension Tuning

2016-10-25
2016-36-0239
In many vehicle motorsport categories, the one of the most important factors that lead a team to the victory is the suspension setup. Parameters like roll stiffness and camber changing are essential to the vehicle behavior during a driving situation. To handle these variables, features like suspension hardpoints arrangement, pivot points position and spring stiffness can be settled. However a setup only will perform a desirable effect if the chosen configuration does not change. Ideally, to make it possible, every component that holds suspension loads (suspension members, mounting plates and chassis) would have to be infinitely rigid. Even though it is not achievable, the existing deformation can be small enough to be negligible when compared with suspension displacement. In order to reach this target, this paper introduce a spring modeling and a Finite Element multibody modeling process of a Formula SAE prototype’s suspension and chassis.
Technical Paper

Analysis of a Formula SAE Vehicle Suspension: Chassis Tuning

2015-09-22
2015-36-0275
In the present paper, a typical Formula SAE double-wishbone suspension is discussed. This study aims to point out a preliminary chassis setup to reduce testing time on track and improve the overall performance of a prototype in a Formula SAE Skid Pad event. The influence of kinematic parameters of the suspension are analyzed to quantify how they change the capability of the tire to generate lateral force due to camber effects. To enhance results, special attention is given to a Magic Formula tire model based on a constrained forces and moments tire test data. Camber and Ackermann steering geometry showed up as major tuning tools to attempt during test period.
X