Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

On-Board Hydrogen Generation for Rapid Catalyst Light-Off

2000-06-19
2000-01-1841
This paper describes an on-vehicle demonstration of a hydrogen-heated catalyst (HHC) system for reducing the level of cold-start hydrocarbon emissions from a gasoline-fueled light-duty vehicle. The HHC system incorporated an onboard electrolyzer that generates and stores hydrogen (H2) during routine vehicle operation. Stored hydrogen and supplemental air are injected upstream of a platinum-containing automotive catalyst when the engine is started. Rapid heating of the catalytic converter occurs immediately as a result of catalytic oxidation of hydrogen (H2) with oxygen (O2) on the catalyst surface. Federal Test Procedure (FTP) emission results of the hydrogen-heated catalyst-equipped vehicle demonstrated reductions of hydrocarbons (HC) and carbon monoxide (CO) up to 68 and 62 percent, respectively. This study includes a brief analysis of the emissions and fuel economy effects of a 10-minute period of hydrogen generation during the FTP.
Technical Paper

Container Deformation Procedure for Ceramic Monolith Catalytic Converters

2000-03-06
2000-01-0217
A typical automotive catalytic converter is constructed with a ceramic substrate and a steel shell. Due to a mismatch in coefficients of thermal expansion, the steel shell will expand away from the ceramic substrate at high temperatures. The gap between the substrate and shell is usually filled with a fiber composite material referred to as “mat.” Mat materials are compressed during assembly and must maintain an adequate pressure around the substrate under extreme temperature conditions. The container deformation measurement procedure is used to determine catalytic converter shell expansion during and after a period of hot catalytic converter operation. This procedure is useful in determining the potential physical durability of a catalytic converter system, and involves measuring converter shell expansion as a function of inlet temperature. A post-test dimensional measurement is used to determine permanent container deformation.
Technical Paper

Catalytic Converter Thermal Environment Measurement Under Dynamometer Simulated Roadloads

2000-03-06
2000-01-0216
An increasing number of passenger vehicle exhaust systems incorporate catalytic converters that are “close-coupled” to the exhaust manifold to further reduce the quantity of cold-start emissions and increase overall catalyst conversion efficiencies. In general, close-coupled catalytic converters are not necessarily subjected to higher inlet exhaust temperatures than conventional underbody catalytic converters. To establish a foundation of on-vehicle temperature data, several passenger vehicles with close-coupled catalytic converters were studied while operating on a chassis dynamometer. Converter temperatures were measured over a variety of vehicle test conditions, including accelerations and extended steady-state speeds for several throttle positions, at both zero- and four-percent simulated road grades.
Technical Paper

Catalytic Converter Vibration Measurement Under Dynamometer Simulated Roadloads

2000-03-06
2000-01-0029
In order to further reduce vehicle cold-start emissions, the use of catalytic converters that are “close-coupled” to the exhaust manifold is increasing. To understand the vibrational environment of close-coupled and underbody converters, a laboratory study was conducted on several passenger vehicles. Catalytic converter vibration spectra were measured on a chassis dynamometer with the vehicle operating over a variety of test conditions. Vehicle operating conditions included hard accelerations and extended steady-state speeds at distinct throttle positions over zero-percent and four-percent simulated road grades.
Technical Paper

Demonstration of Lean Nox Catalytic Converter Technology on a Heavy-Duty Diesel Engine

1997-02-24
970755
Experimental catalysts for the reduction of oxides of nitrogen (NOx) were evaluated on a 258-horsepower (192 kW) direct-injection heavy-duty diesel engine. An experimental reductant delivery system provided supplementary hydrocarbons for the reduction of NOx. Initially, diesel fuel was used as the supplementary reductant. Early experiments resulted in a 10 to 17 percent reduction in NOx emissions when tested using the heavy-duty engine transient Federal Test Procedure (FTP), and a 30 to 40 percent reduction at selected steady-state catalyst inlet temperatures. A fuel economy penalty of five percent was measured for initial FTP experiments. Emissions of total hydrocarbons (HC), carbon monoxide (CO), and particulate matter (PM) tended to increase during initial experiments with the addition of the supplemental reductant, but these emissions decreased with the incorporation of improved catalyst formulations and reductant fuel spray calibrations.
Technical Paper

Cold-Start Hydrocarbon Collection for Advanced Exhaust Emission Control

1992-02-01
920847
This paper describes the findings of a laboratory effort to demonstrate improved automotive exhaust emission control with a cold-start hydrocarbon collection system. The emission control strategy developed in this study incorporated a zeolite molecular sieve in the exhaust system to collect cold-start hydrocarbons for subsequent release to an active catalytic converter. A prototype emission control system was designed and tested on a gasoline-fueled vehicle. Continuous raw exhaust emission measurements upstream and downstream of the zeolite molecular sieve revealed collection, storage, and release of cold-start hydrocarbons. Federal Test Procedure (FTP) emission results show a 35 percent reduction in hydrocarbons emitted during the cold-transient segment (Bag 1) due to adsorption by the zeolite.
Technical Paper

Electrically-Heated Catalyst System Conversions on Two Current-Technology Vehicles

1991-02-01
910612
Two different configurations of electrically-heated catalyst systems were installed on two new production vehicles. A 1990 Buick LeSabre was evaluated with a heated catalyst placed directly in front of the main production catalytic converter while a 1990 Toyota Celica was evaluated with an electrically-heated catalyst placed between the main close-coupled catalytic converter and a smaller downstream production catalytic converter. Initial laboratory studies involved examination of heating strategies to minimize electrical energy requirements, a variety of off-board battery and recharging configurations for their effect on emissions, and multiple air injection strategies to achieve minimum hydrocarbon emissions while avoiding a NOx penalty. Final efforts involved installation of optimized, complete on-vehicle electrically-heated catalyst systems for subsequent on-road mileage accumulation.
X