Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Fatigue Considerations in Use of High – Strength Sheet Steel

1982-02-01
820700
The fatigue behavior of representative classes of high-strength low-alloy and dual phase steel is reviewed. Cyclic properties describing stress-strain and strain-life relations are used to quantitatively assess material variability as well as processing and environmental effects. Examples of the use of this materials information in design analysis and, in particular, component downgaging are then presented.
Technical Paper

Material and Processing Effects on Fatigue Performance of Leaf Springs

1979-02-01
790407
Procedures are developed for assessing the influence of various material and processing factors on the fatigue performance of leaf springs. Cyclic material properties, determined from smooth axial specimens of spring steel, are used to determine the level and cyclic stability of residual stresses resulting from mechanical processing as well as the amount of permanent deformation associated with presetting operations. A damage parameter, incorporating material properties, residual stress effects and applied stressing conditions, is used to predict failure location, i.e. surface or subsurface, and lifetime as a function of processing sequence. Predictions are found to be in good agreement with experimental bending results.
Technical Paper

Fatigue Properties of Cold-Rolled Sheet Steels

1979-02-01
790461
Fatigue characteristics of representative cold-rolled, high strength steels, in gages ranging from 0.072 in. (1.83 mm) to 0.055 in. (1.39 mm), were determined in fully-reversed, axial strain cycling at amplitudes up to 0.01. Alloys were selected from three families of high strength steels: recovery annealed steels, conventional microalloyed steels - nitrogenized steel and rephosphorized steel, and dual phase steel. Cold rolled low-carbon steel provided a comparative baseline. Cyclic stress-strain curves are presented to indicate the degree of cyclic stability achievable by various strengthening mechanisms while relative fatigue resistance is determined from strain-life curves. The implications of these behavioral trends to component down gaging are discussed.
X