Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Simple Model for the Simulation of Low-Frequency Disc Brake Noise

2007-05-15
2007-01-2258
A simple ADAMS model was developed for simulating one possible mechanism that causes low-frequency (less than 1 kHz) noise in disc brake assemblies for heavy-duty and medium-duty trucks. The model consists of: truck tire, axle housing, torque plate, caliper, push rods, inner pad, outer pad, and rotor. Only one component (the torque plate) was modeled as a flexible body (using a finite element model), while all other parts are considered as infinitely rigid. A lumped parameter representing the suspension wrap-up stiffness resists the axle pitch motion. When the brakes are not engaged, the system has two distinct modes of vibration, namely, the axle pitch mode which is governed by the suspension wrap-up stiffness, and the caliper transverse (side-to-side) mode, which is governed by the stiffness of the torque plate (out-of-plane deflection of the torque plate) and by the suspension lateral stiffness.
Technical Paper

The Effect of Kingpin Inclination Angle and Wheel Offset on Medium-Duty Truck Handling

2001-11-12
2001-01-2732
The effect of kingpin inclination angle and wheel offset on various vehicle performance metrics such as steering effort, vehicle handling, and steering system vibration is described in this paper. A simple ADAMS model of a medium-duty truck has been developed for this study. The front axle consists of an idealized solid axle suspension with suspension system components represented by rigid bodies. The tire model used in this study is a linear tire model, and estimates of tire force coefficients were obtained as an average of several published estimates of medium-duty truck tires. Experimental design procedures (DOE) have been conducted to determine the effects of kingpin inclination angle and wheel offset on various steering system performance measures. For each performance metric, a 2-variable (KPIA and wheel offset), 5-level DOE was performed using the full factorial matrix for a total of 25 tests for each performance metric.
Technical Paper

The Effect of Tire Stiffness Parameters on Medium-Duty Truck Handling

2000-05-01
2000-01-1645
This paper presents the results of a sensitivity study on the effect of tire stiffness parameters on selected handling performance metrics of a medium-duty truck. The tire stiffness parameters considered in the study are radial stiffness, longitudinal or braking stiffness, and cornering stiffness. An ADAMS model of a medium-duty truck was developed to simulate vehicle handling maneuvers. Two handling scenarios were considered: a combined braking and cornering scenario and a split-μ, straight-line braking scenario. The results of the study indicate that all three tire stiffness parameters are important in accurately predicting vehicle handling performance. Furthermore, when conducting design studies on suspension and steering system design variables other than tire stiffness parameters, the choice of specific values used for the tire stiffness parameters can significantly influence the results of the design studies.
X