Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Development of a Desulfurization Strategy for a NOx Adsorber Catalyst System

2001-03-05
2001-01-0510
The aggressive reduction of future diesel engine NOx emission limits forces the heavy- and light-duty diesel engine manufacturers to develop means to comply with stringent legislation. As a result, different exhaust emission control technologies applicable to NOx have been the subject of many investigations. One of these systems is the NOx adsorber catalyst, which has shown high NOx conversion rates during previous investigations with acceptable fuel consumption penalties. In addition, the NOx adsorber catalyst does not require a secondary on-board reductant. However, the NOx adsorber catalyst also represents the most sulfur sensitive emissions control device currently under investigation for advanced NOx control. To remove the sulfur introduced into the system through the diesel fuel and stored on the catalyst sites during operation, specific regeneration strategies and boundary conditions were investigated and developed.
Technical Paper

Effect of Fuel Sulfur on Emissions in California Low Emission Vehicles

1998-10-19
982726
The Coordinating Research Council conducted a program to measure the effect of fuel sulfur on emissions from California Low Emission Vehicles (LEVs). Twelve vehicles, two each from six production LEV models, were tested using low mileage as-received catalysts and catalysts aged to 100k by each vehicle manufacturer using “rapid-aging” procedures. There were seven test fuels: five conventional fuels with sulfur ranging from 30 to 630 ppm, and two California reformulated gasoline (RFG) with sulfur of 30 and 150 ppm. Reducing fuel sulfur produced statistically significant reductions in LEV fleet emissions of NMHC, NOx and CO. Comparing conventional fuel and California RFG at the same sulfur level: California RFG had lower NMHC and NOx emissions and higher CO emissions, but only some NMHC and NOx differences and none of the CO differences between conventional and California RFG were statistically significant.
Technical Paper

How Heavy Hydrocarbons in the Fuel Affect Exhaust Mass Emissions: Correlation of Fuel, Engine-Out, and Tailpipe Speciation — The Auto/Oil Air Quality Improvement Research Program

1993-10-01
932725
Species analyses have been performed on engine-out and tailpipe hydrocarbon mass emissions to help understand why fuels with increasing amounts of heavy hydrocarbon constituents produce significantly higher tailpipe hydrocarbon emissions. Mass and speciated hydrocarbon emissions were acquired for a fleet of ten 1989 model year vehicles operating on twenty-six fuels of differing heavy hydrocarbon composition. These fuels formed two statistically designed matrices: one examining the effects of medium, heavy, and tail reformate and medium and heavy catalytically cracked components; and the other examining the effects of heavy paraffinic versus heavy aromatic components and the effects of the 50% distillation temperature. In this paper the fates of fuel species were traced across the engine and across the catalyst, and correlations were developed between engine-out and tailpipe hydrocarbon species emissions and fuel composition.
Technical Paper

Effects of Gasoline Composition on Vehicle Engine-Out and Tailpipe Hydrocarbon Emissions - The Auto/Oil Air Quality Improvement Research Program

1992-02-01
920329
In this pilot study conducted by the Auto/Oil Air Quality Improvement Research Program, engine-out and tailpipe speciated hydrocarbon emissions were obtained for three vehicles operated over the Federal Test Procedure on two different fuels, both of which were speciated. The fates of the fuel species were traced across the engine and across the catalyst, and relationships were developed between engine-out and tailpipe hydrocarbon emissions and fuel composition. These relationships allowed separating the fuel's contribution to engine-out and tailpipe hydrocarbon emissions into two parts, unreacted fuel and partial oxidation products. Specific ozone reactivities and toxic air pollutants were analyzed for both engine-out and tailpipe emissions. Vehicle-to-vehicle, fuel-to-fuel, and bag-to-bag differences have been highlighted.
Technical Paper

Effects of Gasoline Sulfur Level on Mass Exhaust Emissions - Auto/Oil Air Quality Improvement Research Program

1991-10-01
912323
In this portion of the Auto/Oil Air Quality Improvement Research Program, ten 1989 model vehicles were tested using two fuels with different sulfur levels. These tests were run to determine instantaneous effects on exhaust emissions, not long-term durability effects. The high- and low-sulfur fuels contained 466 ppm and 49 ppm sulfur, respectively. Mass exhaust emissions of the fleet decreased as fuel sulfur level was reduced. Overall, HC, CO, and NOx were reduced by 16, 13, and 9 percent, respectively, when fuel sulfur level decreased. This effect appeared to be immediately reversible. Engine-out mass emissions were unaffected by changes in the fuel sulfur content, therefore, tailpipe emissions reductions were attributed to increased catalyst activity as the sulfur level was reduced.
X