Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of a Regenerable Metal Oxide Sheet Matrix CO2 Removal System

1992-07-01
921298
Hamilton Standard has developed a non-venting Metal Oxide Regenerable EMU CO2 Removal Subsystem (MORES) for the NASA Johnson Space Center. This system has the potential for application to an Advanced EMU or retrofit to the existing Shuttle EMU. The MORES system uses a catalyzed, silver based metal oxide to achieve the CO2 removal during Extravehicular Activity (EVA) and uses no supplemental cooling. Regeneration is easily accomplished using cabin air in a simple hot air regeneration process. The MORES technology has been demonstrated in a full size EMU Contaminant Control Cartridge (CCC) using a conventional packed bed and also an improved sheet matrix configuration. The packed bed MORES used pellets encased in a porous shell to meet the design performance goal of 3.5 - 5 hours per simulated EVA for more than 50 cycles. The sheet matrix configuration has demonstrated performance of 6 - 8 hours for greater than 50 cycles.
Technical Paper

Development Status of Regenerable Solid Amine CO2 Control Systems

1985-07-01
851340
Recent development of the solid amine/water desorbed (SAWD) CO2 control system technology has resulted in two preprototype systems. The SAWD I system was developed under NASA Contract NAS9-13624 and is currently under test in the NASA Johnson Space Center, Crew Systems Division Advanced Environmental Control Systems (ECS) Laboratory. The SAWD II system is being developed at Hamilton Standard Division of United Technologies (HSD) under NASA Contract NAS9-16978. This paper reviews the development history of solid amine CO2 control systems and describes the SAWD I and SAWD II systems. In the development of the SAWD II system, special attention was given to reducing its power requirements and to designing the system to be compatible with zero-gravity operation. Energy saving features are discussed, and the zero-gravity solid amine canister test program and selected design are described.
Technical Paper

Development of Solid Amine CO2 Control Systems for Extended Duration Missions

1984-07-01
840937
This paper briefly discusses the development history of solid amine CO2 control systems, describes two distinct CO2 control system concepts, and presents the performance characteristics for both system concepts. The first concept (developed under NASA Contract NAS9-13624) incorporates a solid amine canister, an automatic microprocessor controller, and an accumulator to collect CO2 and to provide regulated CO2 delivery to an oxygen recovery system. This system is currently operating in the Crew Systems Division's Advanced Life Support Development Laboratory (ALSDL). The second system concept (being developed under NASA Contract NAS9-16978) employs multiple solid amine canisters, an advanced automatic controller and system status display, the ability to regulate CO2 delivery for oxygen recovery, and energy saving features that allow system operation at lower power levels than the first concept.
X