Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Experimental Study on the Burning Rate of Methane and PRF95 Dual Fuels

2016-04-05
2016-01-0804
Natural gas as an alternative fuel offers the potential of clean combustion and emits relatively low CO2 emissions. The main constitute of natural gas is methane. Historically, the slow burning speed of methane has been a major concern for automotive applications. Literature on experimental methane-gasoline Dual Fuel (DF) studies on research engines showed that the DF strategy is improving methane combustion, leading to an enhanced initial establishment of burning speed even compared to that of gasoline. The mechanism of such an effect remains unclear. In the present study, pure methane (representing natural gas) and PRF95 (representing gasoline) were supplied to a constant volume combustion vessel to produce a DF air mixture. Methane was added to PRF95 in three different energy ratios 25%, 50% and 75%. Experiments have been conducted at equivalence ratios of 0.8, 1, 1.2, initial pressures of 2.5, 5 and 10 bar and a temperature of 373K.
Technical Paper

Thermodynamic Study on the Solubility of NaBH4 and NaBO2 in NaOH Solutions

2011-08-30
2011-01-1741
Extensive research has been performed for on-board hydrogen generation, such as pyrolysis of metal hydrides (e.g., LiH, MgH₂), hydrogen storages in adsorption materials (e.g., carbon nanotubes and graphites), compressed hydrogen tanks and the hydrolysis of chemical hydrides. Among these methods, the hydrolysis of NaBH₄ has attracted great attention due to the high stability of its alkaline solution and the relatively high energy density, with further advantages such as moderate temperature range (from -5°C to 100°C) requirement, non-flammable, no side reactions or other volatile products, high purity H₂ output. The H₂ energy density contained by the system is fully depend on the solubility of the complicated solution contains reactant, product and the solution stabilizer. In this work, an approach based on thermodynamic equilibrium was proposed to model the relationship between the solubility of an electrolyte and temperature, and the effect of another component on its solubility.
Journal Article

The Impact of Biodiesel on Particle Number, Size and Mass Emissions from a Euro4 Diesel Vehicle

2010-04-12
2010-01-0796
New European emissions legislation (Euro5) specifies a limit for Particle Number (PN) emissions and therefore drives measurement of PN during vehicle development and homologation. Concurrently, the use of biofuel is increasing in the marketplace, and Euro5 specifies that reference fuel must contain a bio-derived portion. Work was carried out to test the effect of fuels containing different levels of Fatty Acid Methyl Ester (FAME) on particle number, size, mass and composition. Measurements were conducted with a Cambustion Differential Mobility Spectrometer (DMS) to time-resolve sub-micron particles (5-1000nm), and a Horiba Solid Particle Counting System (SPCS) providing PN data from a Euro5-compliant measurement system. To ensure the findings are relevant to the modern automotive business, testing was carried out on a Euro4 compliant passenger car fitted with a high-pressure common-rail diesel engine and using standard homologation procedures.
Technical Paper

Polymer Electrolyte Fuel Cell Transport Mechanisms: Simulation Study of Hydrogen Crossover and Water Content

2008-06-23
2008-01-1802
Hydrogen crossover and membrane hydration are significant issues for polymer electrolyte fuel cells (PEFC). Hydrogen crossover amounts to a quantity of unspent fuel, thereby reducing the fuel efficiency of the cell, but more significantly it also gives rise to the formation of hydrogen peroxide in the cathode catalyst layer which acts to irreversibly degenerate the polymer electrolyte. Membrane hydration not only strongly governs the performance of the cell, most noticeable through its effect on the ionic conductivity of the membrane, it also influences the onset and propagation of internal degradation and failure mechanisms that curtail the reliability and safety of PEFCs. This paper focuses on how hydrogen crossover and membrane hydration are affected by; (a) characteristic cell geometries, and (b) operating conditions relevant to automotive fuel cells.
Technical Paper

An Investigation into the Use of Piezo-Fluidic Combined Units as Fuel Injectors for Natural Gas Engines

1996-10-01
961987
A novel piezo-fluidic gaseous fuel injector system designed for natural gas engines is described in this paper The system consists mainly of no-moving-part fluidic devices and piezo electro-fluidic interfaces The steady state and dynamic characteristics of the system were tested on a laboratory experimental rig The results show that the system can handle the large gas volume flow rate required by natural gas engines and is capable of operating via pulse width modulation. A few typical commercial solenoid type gas injectors were also tested and the results were compared with those from the piezo-fluidic injector system. It was found that the piezo-fluidic gaseous fuel injector system has faster switching responses and smaller injection cycle-to-cycle variations
X