Refine Your Search

Search Results

Viewing 1 to 5 of 5
Standard

Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion

2021-01-14
CURRENT
ARP6420
The turbine-engine-inlet flow distortion descriptors summarized in this document apply to the effects of inlet total-pressure, planar-wave, and total-temperature distortions. Guidelines on stability margin, destabilizing influences, types and purposes of inlet data, AIP definition, and data acquisition and handling are summarized from AIR5866, AIR5867, ARP1420, and AIR1419. The degree to which these recommendations are applied to a specific program should be consistent with the complexity of the inlet/engine integration. Total-pressure distortion is often the predominant destabilizing element that is encountered and is often the only type of distortion to be considered, i.e, not all types of distortion need to be considered for all vehicles.
Standard

Gas Turbine Engine Inlet Flow Distortion Guidelines

2017-04-27
CURRENT
ARP1420C
The turbine-engine inlet flow distortion methodology addressed in this document applies only to the effects of inlet total-pressure distortion. Practices employed to quantify these effects continue to develop and, therefore, periodic updates are anticipated. The effects of other forms of distortion on flow stability and performance, and of any distortion on aeroelastic stability are not addressed. The guidelines can be used as necessary to create a development method to minimize the risk of inlet/engine compatibility problems. The degree to which guidelines for descriptor use, assessment techniques, and testing outlined in this document are applied to a specific program should be consistent with the expected severity of the compatibility problem.
Standard

Gas Turbine Engine Inlet Flow Distortion Guidelines

2011-07-20
HISTORICAL
ARP1420B
The turbine-engine inlet flow distortion methodology addressed in this document applies only to the effects of inlet total-pressure distortion. Practices employed to quantify these effects continue to develop and, therefore, periodic updates are anticipated. The effects of other forms of distortion on flow stability and performance, and of any distortion on aeroelastic stability are not addressed. The guidelines can be used as necessary to create a development method to minimize the risk of inlet/engine compatibility problems. The degree to which guidelines for descriptor use, assessment techniques, and testing outlined in this document are applied to a specific program should be consistent with the expected severity of the compatibility problem.
Standard

Gas Turbine Engine Inlet Flow Distortion Guidelines

1998-11-01
HISTORICAL
ARP1420A
The turbine-engine inlet flow distortion methodology addressed in this document applies only to the effects of inlet total-pressure distortion. Practices employed to quantify these effects are developing and therefore, periodic updates are anticipated. The effects of other forms of distortion on flow stability and performance and of any distortion on aeroelastic stability are not addressed. The guidelines can be used as necessary to create a development method to minimize the risk of inlet/engine compatibility problems. The degree to which guidelines for descriptor use, assessment techniques, and testing outlined in this document are applied to a specific program should be consistent with the expected severity of the compatibility problem.
Standard

GAS TURBINE ENGINE INLET FLOW DISTORTION GUIDELINES

1978-03-01
HISTORICAL
ARP1420
The turbine-engine inlet flow distortion methodology addressed in this document applies only to the effects of inlet total-pressure distortion. Practices employed to quantify these effects are developing and therefore, periodic updates are anticipated. The effects of other forms of distortion on flow stability and performance and of any distortion on aeroelastic stability are not addressed. The guidelines can be used as necessary to create a development method to minimize the risk of inlet/engine compatibility problems. The degree to which guidelines for descriptor use, assessment techniques, and testing outlined in this document are applied to a specific program should be consistent with the expected severity of the compatibility problem.
X