Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Investigation on Fuel Economy Benefits by Lubrication System Optimization for a High Performance 2.2 L Diesel Engine

2024-04-09
2024-01-2415
Lubrication systems play a major role not only in the durability of modern IC engines but also in performance and emissions. The design of the lubrication system influences the brake thermal efficiency of the engine. Also, efficient lubrication reduces the engine's CO2 emissions significantly. Thus, it is critical for an IC engine to have a well-designed lubrication system that performs efficiently at all engine operating conditions. The conventional lubrication system has a fixed-displacement oil pump that can cater to a particular speed range. However, a fully variable displacement oil pump can cater to a wide range of speeds, thereby enhancing the engine fuel efficiency as the oil flow rates can be controlled precisely based on the engine speed and load conditions. This paper primarily discusses the optimization of a lubrication system with a Variable Displacement Oil Pump (VDOP) and a map-controlled Piston Cooling Jet (PCJ) for a passenger car diesel engine.
Technical Paper

Design and Development of Vane Type Variable flow Oil Pump for Automotive Application

2011-10-06
2011-28-0102
Automobile OEM's around the world are looking to improve their overall vehicle and engine efficiency in terms of fuel economy and power output. Efficiency improvement is possible by cutting down the engine parasitic loads. One such parasitic load is the oil pump, which lubricates the engine parts. Oil pump is the heart of an engine lubrication system, and its important functions are cooling and lubricating the engine moving parts by delivering adequate oil flow based on the engine demand. Insufficient or no oil delivery from the oil pump leads to the seizure of the engine. The internal vane type oil pump is one kind of positive displacement type pump, where oil gets transferred from the oil sump into the inlet volume. The negative pressure is created inside the pumping chamber due to increase in area. As the vane rotates eccentrically with respect to the stator, it delivers the oil at a higher pressure from inlet to outlet and supplies to engine gallery through the discharge port.
Technical Paper

Investigations on Reduction of Power Consumption of Oil Pump for New Advanced Multijet Diesel Engine

2009-04-20
2009-01-1463
Automobile OEM's around the world are looking to improve their overall vehicle and engine efficiency in terms of fuel economy and power output. Efficiency improvement is possible by cutting down the engine parasitic loads. Lubrication oil pump is one such source for parasitic loss of multijet diesel engine. One best way of reducing the same is by optimizing the power consumed by the oil pump without appreciably affecting the flow requirements of the engine. This paper describes an effective approach to bring down the power consumption of a fixed displacement oil pump by keying out various factors contributing for the same. Detailed here are the methods used for identifying those factors, modifications carried out in the design, and testing methods employed for the estimation, together with the results achieved. The test results show that it is possible to improve the power consumption of oil pump by 18% as a result of this study.
X