Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of Accelerated Durability Tests for Commercial Vehicle Suspension Components

2005-11-01
2005-01-3565
In this paper, we describe the development of multi-axis, accelerated durability tests for commercial vehicle suspension systems. The objective of the exercise is to design accelerated durability tests that have well-defined correlation with customer usage. The procedure starts with a definition of the vehicle's duty cycle based on the expected operational parameters, namely: road profile, vehicle speed, and warranty life. The second step is determining the durability proving ground test schedule such that the accumulated pseudo-damage (based on spindle loads) is representative of the vehicle's duty cycle. The third step in the process is developing a multi-axis laboratory rig test for the suspension system, such that the accumulated damage in the proving ground is replicated in a compressed time frame.
Technical Paper

Heavy Vehicle Suspension Frame Durability Analysis Using Virtual Proving Ground

2005-11-01
2005-01-3609
Virtual proving ground (VPG) simulations have been popular with passenger vehicles. VPG uses LS-DYNA based non-linear contact Finite Element analysis (FEA) to estimate fully analytical road loads and to predict structural components durability with PG road surfaces and tire represented as Finite elements. Heavy vehicle industry has not used these tools extensively in the past due to the complexity of heavy vehicle systems and especially due to the higher number of tires in the vehicle compared to the passenger car. The higher number tires in the heavy vehicle requires more computational analysis duration compared to the passenger car. However due to the recent advancements in computer hardware, virtual proving ground simulations can be used for heavy vehicles. In this study we have used virtual proving ground based simulation studies to predict the durability performance of a trailer suspension frame.
X