Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Modelling and Experimental Investigations of Supercharged HCCI Engines

2006-04-03
2006-01-0634
This paper focuses on supercharged HCCI engines employing internal EGR that is obtained by the use of negative valve overlap. In HCCI engines, the absence of throttling coupled with the use of high compression ratio to facilitate auto-ignition and with the use of lean mixtures result in improved fuel efficiency. High dilution is required to control the auto-ignition and it also results in reduction of the production of NOx. To compensate for the charge dilution effect, the method used to recover the loss of power is to introduce more air in to the engine which allows introducing also more fuel while maintaining high lambda. A supercharger is required to introduce the required amount of air into the engine. The modelling investigation performed with Ricardo WAVE® coupled with CHEMKIN® and experimental investigation for supercharged HCCI show significant improvement in terms of extension of load range and reduction of NOx over the naturally aspirated HCCI and also over SI operation.
Technical Paper

An Investigation into the Operating Mode Transitions of a Homogeneous Charge Compression Ignition Engine Using EGR Trapping

2004-06-08
2004-01-1911
While Homogeneous Charge Compression Ignition (HCCI) is a promising combustion mode with significant advantages in fuel economy improvement and emission reductions for vehicle engines, it is subject to a number of limitations, for example, hardware and control complexity, or NOx and NVH deterioration near its operating upper load boundary, diminishing its advantages. Conventional spark-ignition combustion mode is required for higher loads and speeds, thus the operating conditions near the HCCI boundaries and their corresponding alternatives in SI mode must be studied carefully in order to identify practical strategies to minimise the impact of the combustion mode transition on the performance of the engine. This paper presents the results of an investigation of the combustion mode transitions between SI and HCCI, using a combination of an engine cycle simulation code with a chemical kinetics based HCCI combustion code.
Technical Paper

Analytical Investigation of Cam Strategies for SI Engine Part Load Operation

2004-03-08
2004-01-0997
Extensive simulation was carried out to investigate cam strategies for SI engine part load operation. Performance of the engine with dual independent variable cam timing (VCT) system is assessed. Over a wide range of part load operating conditions, engine performance parameters, such as fuel consumption, were expressed in forms of contour maps as a function of intake and exhaust cam timings. Based upon the simulation results, cam timings were optimized for various part load conditions. A cam strategy incorporating intake and exhaust cam retard was developed to improve fuel economy and emissions. Influences of intake and exhaust cam timing on the gas-exchange and combustion processes were also analyzed. It was shown that the fuel economy improvement by dual independent VCT is achieved primarily through reduction of pumping loss. Effects of in-cylinder charge motion and the use of differential intake cam profiles on fuel economy were examined.
Technical Paper

Operating Characteristics of a Homogeneous Charge Compression Ignition Engine with Cam Profile Switching - Simulation Study

2003-05-19
2003-01-1859
A single zone combustion model based on a chemical kinetic solver has been combined with a one-dimension thermo/gas dynamic engine simulation code to study the operating characteristics of a V6 engine in which Homogeneous Charge Compression Ignition (HCCI) operation (also referred to as ‘Controlled Auto-ignition” CAI) is enabled by a cam profile switching (CPS) system with negative valve overlap. An operational window within which HCCI combustion is possible has been identified and the limit of HCCI operating region for varied valve lift possibilities is explored. The mechanisms and potential fuel economy improvements within the HCCI envelope are studied and modelled results compared against data from similar engines. It is shown that for the best fuel economy the valve timing strategy needs to be selected very carefully, despite the engine's capability to operate at a range of valve timing combinations.
X