Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Analytical Study of Effectiveness of a Degreened and Aged DOC as an Oxidation Device for NO Under Variable Operating and Inlet Conditions

2009-04-20
2009-01-0908
It has recently been suggested in an experimental study that an aged DOC could be net consumer of engine out NO2 (Katare et al, 2007) thus inhibiting the fast reaction (2NH3 + NO + NO2 => 2N2+3H2O) in an SCR that might follow. Both engine test and flow reactor results indicated that at low temperatures CO and HC reduces NO2 to NO and that CO is much better reductant than HC. The present study investigates the mechanistic story behind this experimentally observed phenomenon by means of a global reaction mechanism. It also investigates the role of CO inhibition of NO oxidation at higher temperature which also plays key role in the overall oxidation efficiency of a DOC. Once a suitable mechanism is defined by comparing against measurements, the current study will use it to examine conditions under which DOC can destroy NO2 and to propose possible strategies to avoid NO2 consumption in order to obtain high SCR efficiency.
Technical Paper

Development of a Quasi-Steady Approach Based Simulation Tool for System Level Exhaust Aftertreatment Modeling

2008-04-14
2008-01-0866
This article describes a system level 1D simulation tool that has been constructed on the Quasi-steady (QS) method. By assuming that spatial changes are much greater than the temporal ones, rigorous 1D governing equations can be considerably simplified thus becoming less computationally demanding to solve and therefore suitable for control oriented modeling purposes. With the proposed tool exhaust pipe wall temperature profiles, including multiple-wall-layer configurations, are solved through a finite difference scheme. Momentum equation is included for predicting pressure losses due to frictions and geometric irregularity. Exhaust fluid properties (transport and thermodynamic) are evaluated according to NASA or JANAF polynomial thermal data basis. The proposed tool allows the consideration of an arbitrary number of chemical species and reactions in the entire system. A novel semi-automatic approach was developed to handle catalytic reaction kinetics intuitively.
X