Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Simulation of Enclosures Including Attached Duct Work

2013-05-13
2013-01-1958
Partial enclosures are commonly utilized to reduce the radiated noise from equipment. Often, enclosure openings are fitted with silencers or louvers to further reduce the noise emitted. In the past, the boundary element method (BEM) has been applied to predict the insertion loss of the airborne path with good agreement with measurement. However, an alteration at the opening requires a new model and additional computational time. In this paper, a transfer function method is proposed to reduce the time required to assess the effect of modifications to an enclosure. The proposed method requires that the impedance at openings be known. Additionally, transfer functions relating the sound pressure at one opening to the volume velocity at other openings must be measured or determined using simulation. It is assumed that openings are much smaller than an acoustic wavelength. The sound power from each opening is determined from the specific acoustic impedance and sound pressure at the opening.
Technical Paper

A New Look at the High Frequency Boundary Element and Rayleigh Integral Approximations

2003-05-05
2003-01-1451
This paper revisits the popular Rayleigh integral approximation, and also considers a second approximation, the high frequency boundary element method which is similar to the Rayleigh integral. Both methods are approximations to the boundary integral equation, and can solve problems in a fraction of the time required by the conventional boundary element method. The development of both methods from the Helmholtz integral equation is demonstrated and the differences between the two methods are delineated. Both methods were compared on practical examples including a running engine, gearbox, and construction cab. It was concluded that both methods can reliably predict the sound power for many problems but are inaccurate for sound pressure computations.
X