Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Identification of Vortical Structure that Drastically Worsens Aerodynamic Drag on a 2-Box Vehicle using Large-scale Simulations

2016-04-05
2016-01-1585
It is important to reduce aerodynamic drag for reducing fuel consumption. Conventionally reduction of aerodynamic drag has been carried out by shape optimization of each part of a vehicle based on the investigations of the time-averaged flows around the vehicle. However, the general tendency of drag reduction has been saturated recently and it is required to develop a new flow-control technique to achieve further reduction in aerodynamic drag. We therefore focus on the unsteadiness of the flow around a vehicle to achieve it because the aerodynamic drag of a vehicle fluctuates over time due to repetitions of generation, growth, merging and disappearance of various sizes of vortices around it. These vortices are formed by flow separations, for which the longitudinal coherent vortices inside turbulent boundary layers on vehicle surfaces are presumably playing an important role.
Journal Article

The Performance of Multi-Cylinder Hydrogen / Diesel Dual Fuel Engine

2015-09-06
2015-24-2458
Hydrogen can be produced by electrolyzation with renewable electricity and the combustion products of hydrogen mixture include no CO, CO2 and hydrocarbons. In this study, engine performance with hydrogen / diesel dual fuel (hydrogen DDF) operation in a multi-cylinder diesel engine is investigated due to clarify advantages and disadvantages of hydrogen DDF operation. Hydrogen DDF operation under several brake power conditions are evaluated by changing a rate of hydrogen to total input energy (H2 rate). As H2 rate is increased, an amount of diesel fuel is decreased to keep a given torque constant. When the hydrogen DDF engine is operated with EGR, Exhaust gas components including carbon are improved or suppressed to same level as conventional diesel combustion. In addition, brake thermal efficiency is improved to 40% by increase in H2 rate that advances combustion phasing under higher power condition. On the other hand, NOx emission is much higher than one of conventional diesel engine.
Technical Paper

The Combustion Improvements of Hydrogen / Diesel Dual Fuel Engine

2015-09-01
2015-01-1939
Hydrogen can be produced by electrolyzation with renewable electricity and reduce the combustion products from hydrogen mixture don't include CO, CO2 and unburned hydrocarbon components. We focused on these characteristics of hydrogen and high thermal efficiency of diesel engine and acquired the performance of hydrogen diesel dual fuel (DDF) engine. We changed proportion of hydrogen to total input energy and studied basic combustion and exhaust gas emission performance of hydrogen DDF operation. In addition, we studied the effects of advancement of diesel fuel injection timing and EGR on combustion behavior and improvement of NOx emission. Especially, EGR improved NOx emission from hydrogen DDF operation drastically without a decrease in thermal efficiency. Under hydrogen DDF operation with EGR, diesel fuel injection timing was advanced for stable combustion and it inhibited the degradation of thermal efficiency.
X