Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Visualization of Combustion and Flow Phenomena in a Methane-Fueled Passive Pre-Chamber Ignited Gas Engine

2023-09-29
2023-32-0057
This study aims to investigate the combustion and flow phenomena in a stoichiometrically operated methane-fueled passive pre-chamber ignited gas engine. The combustion phenomena are visualized with a high-speed camera and the chemical properties are resolved by Large Eddy Simulation (LES) turbulent model with the SAGE combustion approach. Results reveal that a highly compressed unburnt gas of intermediate fuel species emerges from the pre-chamber before the flame ejection due to the high-pressure difference which promptly consumes the main chamber charge and accelerates combustion. Moreover, the nozzle diameter and spark plug orientation significantly affect the flame propagation as well as the overall engine performance.
Technical Paper

Kinetic Modeling of Ammonia-SCR and Experimental Studies over Monolithic Cu-ZSM-5 Catalyst

2019-01-15
2019-01-0024
Ammonia-selective catalytic reduction (SCR) systems have been introduced commercially in diesel vehicles, however catalyst systems with higher conversion efficiency and better control characteristics are required to know the actual emissions during operation and the emissions in random test cycles. Computational fluid dynamics (CFD) is an effective approach when applied to SCR catalyst development, and many models have been proposed, but these models need experimental verification and are limited in the situations they apply to. Further, taking account of redox cycle is important to have better accuracy in transient operation, however there are few models considering the cycle. Model development considering the redox reactions in a zeolite catalyst, Cu-ZSM-5, is the object of the research here, and the effects of exhaust gas composition on the SCR reaction and NH3 oxidation at high temperatures are investigated.
Technical Paper

Numerical Simulation of Evaporating Sprays of Ethanol Fuel Blends

2013-10-14
2013-01-2552
Ethanol is a promising alternative to fossil fuels because it can be produced from biomass resources that are renewable. Due to the amount of production, however, the usage would be limited to blends with other conventional fuels. Ethanol-fuel blends are azeotropic and have unique vaporization characteristics different from blends composed of aliphatic hydrocarbons, so that the present study developed a numerical scheme which takes into account the vapor-liquid equilibrium of azeotrope in order to update the author's original version of the multi-component fuel CFD model and to evaluate the effect of mixing ethanol into gasoline on the evaporation process. The numerical simulation was implemented for evaporating sprays of ethanol-n-heptane blends, which are injected through a single hole nozzle. In addition to the vapor-liquid equilibrium, the effect of the latent heat of vaporization was investigated.
Journal Article

Modeling of Auto-Ignition and Combustion Processes for Dual-Component Fuel Spray

2011-09-11
2011-24-0001
Auto-ignition and combustion processes of dual-component fuel spray were numerically studied. A source code of SUPERTRAPP (developed by NIST), which is capable of predicting thermodynamic and transportation properties of pure fluids and fluid mixtures containing up to 20 components, was incorporated into KIVA3V to provide physical fuel properties and vapor-liquid equilibrium calculations. Low temperature oxidation reaction, which is of importance in ignition process of hydrocarbon fuels, as well as negative temperature coefficient behavior was taken into account using the multistep kinetics ignition prediction based on Shell model, while a global single-step mechanism was employed to account for high temperature oxidation reaction. Computational results with the present multi-component fuel model were validated by comparing with experimental data of spray combustion obtained in a constant volume vessel.
X