Refine Your Search

Topic

Search Results

Journal Article

Combustion Analysis of Active Pre-Chamber Design for Ultra-Lean Engine Operation

2024-04-27
Abstract In this article, the effects of mixture dilution using EGR or excessive air on adiabatic flame temperature, laminar flame speed, and minimum ignition energy are studied to illustrate the fundamental benefits of lean combustion. An ignition system developing a new active pre-chamber (APC) design was assessed, aimed at improving the indicated thermal efficiency (ITE) of a 1.5 L four-cylinder gasoline direct injection (GDI) engine. The engine combustion process was simulated with the SAGE detailed chemistry model within the CONVERGE CFD tool, assuming the primary reference fuel (PRF) to be a volumetric mixture of 93% iso-octane and 7% n-heptane. The effects of design parameters, such as APC volume, nozzle diameter, and nozzle orientations, on ITE were studied. It was found that the ignition jet velocity from the pre-chamber to the main chamber had a significant impact on the boundary heat losses and combustion phasing.
Journal Article

Comparison of Tabulated and Complex Chemistry Approaches for Ammonia–Diesel Dual-Fuel Combustion Simulation

2024-04-18
Abstract Using ammonia as a carbon-free fuel is a promising way to reduce greenhouse gas emissions in the maritime sector. Due to the challenging fuel properties, like high autoignition temperature, high latent heat of vaporization, and low laminar flame speeds, a dual-fuel combustion process is the most promising way to use ammonia as a fuel in medium-speed engines. Currently, many experimental investigations regarding premixed and diffusive combustion are carried out. A numerical approach has been employed to simulate the complex dual-fuel combustion process to better understand the influences on the diffusive combustion of ammonia ignited by a diesel pilot. The simulation results are validated based on optical investigations conducted in a rapid compression–expansion machine (RCEM). The present work compares a tabulated chemistry simulation approach to complex chemistry-based simulations.
Journal Article

An Improved Semi-Transient Brake Cooling Simulation Method

2024-02-05
Abstract In this article, an improved brake cooling simulation method is introduced. By this method, the vehicle parameters, such as weight, height of the center of gravity, wheelbase, and the like can be included to calculate the braking thermal load under different operating conditions. The effect of the brake kinetic energy regeneration (BKER) on the braking thermal load can also be calculated by this method. The calculated braking thermal load is then input to a coupled 3D simulation model to conduct flow and thermal simulation to calculate brake disc temperature. It is demonstrated that by this simulation method, the difference between the brake disc temperatures obtained from simulation and vehicle test can be controlled below 5%.
Journal Article

Using Latent Heat Storage for Improving Battery Electric Vehicle Thermal Management System Efficiency

2023-12-20
Abstract One of the key problems of battery electric vehicles is the risk of severe range reduction in winter conditions. Technologies such as heat pump systems can help to mitigate such effects, but finding adequate heat sources for the heat pump sometimes can be a problem, too. In cold ambient conditions below −10°C and for a cold-soaked vehicle this can become a limiting factor. Storing waste heat or excess cold when it is generated and releasing it to the vehicle thermal management system later can reduce peak thermal requirements to more manageable average levels. In related architectures it is not always necessary to replace existing electric heaters or conventional air-conditioning systems. Sometimes it is more efficient to keep them and support them, instead. Accordingly, we show, how latent heat storage can be used to increase the efficiency of existing, well-established heating and cooling technologies without replacing them.
Journal Article

Stochastic Noise Sources for Computational Aeroacoustics of a Vehicle Side Mirror

2023-11-09
Abstract The broadband aeroacoustics of a side mirror is investigated with a stochastic noise source method and compared to scale-resolving simulations. The setup based on an already existing work includes two geometrical variants with a plain series side mirror and a modified mirror with a forward-facing step mounted on the inner side. The aeroacoustic near- and farfield is computed by a hydrodynamic–acoustic splitting approach by means of a perturbed convective wave equation. Aeroacoustic source terms are computed by the Fast Random Particle-Mesh method, a stochastic noise source method modeling velocity fluctuations in time domain based on time-averaged turbulence statistics. Three RANS models are used to provide input data for the Fast Random Particle-Mesh method with fundamental differences in local flow phenomena.
Journal Article

Investigations on Multiple Injection Strategies in a Common Rail Diesel Engine Using Machine Learning and Image-Processing Techniques

2023-10-26
Abstract The present study examines the effect of the multiple injection strategies in a common rail diesel engine using machine learning, image processing, and object detection techniques. The study demonstrates a novel approach of utilizing image-processing tools to gain information from heat release rates and in-cylinder visualizations from experimental or computational studies. The 3D CFD combustion and emission predictions of a commercial code ANSYS FORTE© are validated with small-bore common rail diesel engine data with known injection strategies. The validated CFD tool is used as a virtual plant model to optimize the injection schedule for reducing oxides of nitrogen (NOx) and soot emissions using an apparent heat release rate image-based machine learning tool. A methodology of the machine learning tool is quite helpful in predicting the NO–soot trade-off.
Journal Article

Numerical Simulation of Turbulent Structures Inside Internal Combustion Engines Using Large Eddy Simulation Method

2023-10-16
Abstract Using two subgrid-scale models of Smagorinsky and its dynamic version, large eddy simulation (LES) approach is applied to develop a 3D computer code simulating the in-cylinder flow during intake and compression strokes in an engine geometry consisting of a pancake-shaped piston with a fixed valve. The results are compared with corresponding experimental data and a standard K-Ɛ turbulence model. LES results generally show better agreement with available experimental data suggesting that LES with dynamic subgrid-scale model is more effective method for accurately predicting the in-cylinder flow field.
Journal Article

Cylinder Liner Velocity Calculation under Dynamic Condition in the Pursuit of Liner Cavitation Investigation of an Internal Combustion Engine

2023-10-12
Abstract An analytical method for nonlinear three-dimensional (3D) multi-body flexible dynamic time-domain analysis for a single-cylinder internal combustion (IC) engine consisting of piston, connecting rod, crank pin, and liner is developed. This piston is modeled as a 3D piston that collides with the liner as in a real engine. The goal is to investigate the piston slap force and subsequent liner vibration. Liner vibrational velocity is directly responsible for pressure fluctuations in the coolant region resulting in bubble formation and subsequent collapse. If the bubble collapse is closer to the liner surface, cavitation erosion in the liner might occur. The mechanism of liner cavitation is briefly explained, which would take a full computational fluid dynamics (CFD) model to develop, which is out of scope for the present work.
Journal Article

Numerical Analysis and Modelling of the Effectiveness of Micro Wind Turbines Installed in an Electric Vehicle as a Range Extender

2023-10-10
Abstract In recent years, the number of electric vehicles (EVs) has grown rapidly, as well as public interest in them. However, the lack of sufficient range is one of the most common complaints about these vehicles, which is particularly problematic for people with long daily commutes. Thus, this article proposed a solution to this problem by installing micro wind turbines (MWTs) on EVs as a range extender. The turbines will generate electricity by converting the kinetic energy of the air flowing through the MWT into mechanical energy, which can have a reasonable effect on the vehicle aerodynamics. The article uses mathematical modelling and numerical analysis. Regarding the modelling, a detailed EV model in MATLAB/SIMULINK was developed to analyze the EV performance using various driving cycles in real time.
Journal Article

Assessment of Computational Fluid Dynamics Reynolds-Averaged Navier–Stokes Models for Bluff Bodies Aerodynamics

2023-09-19
Abstract Since the steady-state computational fluid dynamics (CFD) Reynolds-averaged Navier–Stokes (RANS) turbulence models offer low-cost and sensible accuracy, they are frequently utilized for bluff bodies’ external aerodynamics investigations (e.g., upwind, crosswind, and shape optimization). However, no firm certainty is made regarding the best model in terms of accuracy and cost. Based on cost and accuracy aspects, four RANS turbulence models were studied, which are Spalart–Allmaras, realizable k-ε, RNG k-ε, and SST k-ω. Ahmed body with a 25° slant angle benchmark case was introduced for this investigation. Two grids were generated to satisfy the near-wall treatment of each turbulence model. All grid settings were proposed and discussed in detail. Fluid-structure analysis was performed on five different planes.
Journal Article

Gas-Dynamic Interactions between Pre-Chamber and Main Chamber in Passive Pre-Chamber Ignition Gasoline Engines

2023-08-30
Abstract Pre-chamber turbulent jet ignition (TJI) is a method of generating distributed ignition sites through multiple high-speed turbulent jets in order to achieve an enhanced burn rate in the engine cylinder when compared to conventional spark plug ignition. To study the gas-dynamic interactions between the two chambers in a gasoline engine, a three-dimensional numerical model was developed using the commercial CFD code CONVERGE. The geometry and parameters of the engine used were based on a modified turbocharged GM four-cylinder 2.0 L GDI gasoline engine. Pre-chambers with nozzle diameters of 0.75 mm and 1.5 mm were used to investigate the effect of pre-chamber geometry on pre-chamber charging, combustion, and jet formation. The local developments of gas temperature and velocity were captured by adaptive mesh refinement, while the turbulence was resolved with the k-epsilon model of the Reynolds averaged Navier–Stokes (RANS) equations.
Journal Article

Experimental and Numerical Investigation of Combustion and Noise, Vibrations, and Harshness Emissions in a Drone Jet Engine Fueled with Synthetic Paraffinic Kerosene

2023-08-14
Abstract Emissions and effects of climate change have prompted study into fuels that reduce global dependence on traditional fuels. This study seeks to investigate engine performance, thermochemical properties, emissions, and perform NVH analysis of Jet-A and S8 using a single-stage turbojet engine at three engine speeds. Experimental Jet-A results were used to validate a CFX simulation of the engine. Engine performance was quantified using thermocouples, pressure sensors, tachometers, flow meters, and load cells fitted to the engine. Emissions results were collected using an MKS Multigas Emissions Analyzer that examined CO, CO₂, H₂O, NOx, and THC. NVH analysis was conducted using a multifield, free-field microphone, and triaxial accelerometer. This study found that Jet-A operates at higher temperatures and pressures than S8, and S8 requires higher fuel flow rates than Jet-A, leading to poorer efficiency and thrust. S8 produced stronger vibrations over 5 kHz compared to Jet-A.
Journal Article

Design Optimization Methods for Forced Lubrication System Used in Automotive Transmissions

2023-07-18
Abstract Lubrication has been a major area of interest in engineering. Especially in vehicle transmissions, lubrication plays a very crucial role because gears and bearings are constantly subjected to heavy loads. Proper lubrication is essential for maintaining system performance and ensuring endurance life. Insufficient lubrication can lead to excessive wear, increased friction, and eventually, failures in the transmission components. However, excess lubrication can result in power losses due to the resistance offered by the excessive lubricant. Therefore, achieving effective lubrication using optimized lubrication system design is vital for ensuring the longevity and efficiency of the transmission system. Majorly, two types of lubrication methods are used in transmissions: splash lubrication and forced lubrication. This article focuses on forced lubrication, where the lubrication system actively delivers the required flow of lubricant to specific locations within the transmission.
Journal Article

Precise Electrical Machine Stator Winding Modeling for Thermal Analysis of Efficient Cooling Concepts

2023-07-12
Abstract The current development of electric and hybrid electric vehicles has drawn more attention toward the development of electrical machines with high power densities. Though highly efficient, these machines heat up significantly during operation. By design, state-of-the-art water jacket cooling concepts remove the heat mainly through high internal thermal resistances of the electrical machine. The resulting maximum temperatures in the end winding region limit the achievable machine power output. In this study, alternative cooling concepts are presented, which efficiently use the existing heat conduction paths of an electric machine. For this purpose, two modeling methods for the stator windings were developed: a high-resolution approach that considers each individual wire and an abstract approach that uses zones of constant anisotropic thermal conductivity to specify the heat flow in the windings.
Journal Article

Numerical Simulation and Experimental Investigation of Different Cooling Structures on Cooling Performance and Fuel Consumption of a Two-Cylinder Motorcycle Engine

2023-06-26
Abstract The reasonable engine cooling system design can give a better cooling of engine, the coolant flow direction and different cooling structure designs have great impact on the cooling performance and fuel consumption of engine. Therefore, to gain a deeper understanding of the impact of different cooling system designs on engine cooling performance, three different split cooling structures and two oil–water heat exchanger (OWHE) layouts are designed for a two-cylinder motorcycle engine. Three-dimensional CFD analysis method is used for analyzing the coolant velocity distributions and one-dimensional systematic analysis method is used for analyzing the system flow rate at those cooling structure designs and OWHE designs. Meanwhile, experimental investigation of different cooling structures and OWHE layouts on fuel consumption is conducted by the bench test of worldwide motorcycle test cycle.
Journal Article

Enhancing Simulation Efficiency and Quality of Transient Conjugate Thermal Problems by Using an Advanced Meta-modeling Approach

2023-06-15
Abstract In the field of thermal protection, detailed three-dimensional computational fluid dynamics (3D-CFD) simulations are widely used to analyze the thermal behavior on a full vehicle level. One target is to identify potential violations of component temperature limits at an early stage of the development process. In battery electric vehicles (BEVs), transient load cases play an increasing role in evaluating components and vehicle systems close to real-world vehicle operation. The state-of-the-art 3D simulation methodologies require significant time and computational effort when running transient load scenarios. One main reason is the conjugate characteristic of the problem, meaning that conduction within the component and convection into the surrounding air occur simultaneously. This requires a detailed consideration of both the fluid and structural domains.
Journal Article

Improved Correlations for the Unstretched Laminar Flame Properties of Mixtures of Air with Iso-octane and Gasoline Surrogates TRF86 and TRF70

2023-06-08
Abstract Laminar flame properties embody the fundamental information in flame chemistry and are key parameters to understanding flame propagation. The current study focuses on two parameters: the unstretched laminar flame speed (LFS) and ϕm (the equivalence ratio at which the LFS reaches its maximum). Most existing correlations for LFS are either only applicable within a narrow range of conditions or built on a large number of coefficients. Few correlations are available for ϕm . Thus, the objectives of the current study are to provide accurate, while concise, correlations for both properties for a wide range of working conditions in internal combustion (IC) engines, including dilution effects.
Journal Article

Hot Cars, Cool Bodies, No Air Conditioners?

2023-03-15
Abstract A typical modern automobile compressor-driven air conditioner, about powerful enough to cool a house, may not be needed even in very hot, humid climates if we combine insights from comfort theory with innovations in comfort delivery, photonics, and superefficient thermal and air-handling devices. Recent advances can successively minimize unwanted heat gain into the passenger cabin, cool people’s bodies rather than the vehicle, deliver highly effective radiant cooling, passively reject extracted heat to the sky, and, if needed, move air very efficiently and quietly to expand the human comfort range. Together these proven innovations may give automotive occupants excellent hot-weather comfort without refrigerative air conditioning.
Journal Article

Novel Approach to the Mechanism of Aerodynamic Forces

2023-02-07
Abstract This study consists of a novel approach based on Classical Mechanics to explain the aerodynamic forces on a body in motion relating to a fluid. This new approach does not require the presence of viscosity to generate the forces and is compatible with the Kutta condition. The physical reasoning of the approach is outlined with the introduction of the aerodynamic suction effect of the body. Next, the mathematical expressions and a code that models the physical phenomena are developed. These are applied for the case of a sphere immersed in a moving fluid and then an airfoil. An initial validation of this new approach is performed by a comparison of the theoretical results and the available results of the National Advisory Committee for Aeronautics (NACA) airfoils. This new mathematical approach is especially valid for high Reynolds numbers where viscosity can be neglected.
Journal Article

Investigation on the Aerodynamic Performance of Different Aerofoils Using Vortex Generators

2023-01-25
Abstract This article aims to analyze the effect of vortex generators (VGs) placed on symmetrical and cambered aerofoil. Simulation and experimental works were carried out using NACA 6321 and NACA 0021 aerofoils at different angles of attack (AOA) and aerodynamic performance obtained at a velocity of 15 m/s and 140625 Reynolds number (Re). In this study, aerofoils with the same thickness and a novel design of minute VGs were introduced and placed at a location of 0.5C (50% of chord). The VGs improved the stall AOA by 4° and 2° in simulation and experimental methods, respectively, with no drag increment compared to the baseline aerofoil. These VGs controlled the boundary layer over an aerofoil with enhancement in aerodynamic efficiency of subsonic aircrafts.
X