Refine Your Search

Topic

Author

Search Results

Technical Paper

On-Road Testing to Characterize Speed-Following Behavior in Production Automated Vehicles

2024-04-09
2024-01-1963
A fully instrumented Tesla Model 3 was used to collect thousands of hours of real-world automated driving data, encompassing both Autopilot and Full Self-Driving modes. This comprehensive dataset included vehicle operational parameters from the data busses, capturing details such as powertrain performance, energy consumption, and the control of advanced driver assistance systems (ADAS). Additionally, interactions with the surrounding traffic were recorded using a perception kit developed in-house equipped with LIDAR and a 360-degree camera system. We collected the data as part of a larger program to assess energy-efficient driving behavior of production connected and automated vehicles. One important aspect of characterizing the test vehicle is predicting its car-following behavior. Using both uncontrolled on-road tests and dedicated tests with a lead car performing set speed maneuvers, we tuned conventional adaptive cruise control (ACC) equations to fit the vehicle’s behavior.
Technical Paper

Adaptive Cycle Engines vs. Electric Motors: A Comparison on Standard Drive Schedules

2024-04-09
2024-01-2097
Adaptive Cycle Engines, where compression and expansion events do not follow a fixed sequence but rather take place depending on demand, are competitive against electric motors because of their higher power density, lower carbon footprint with current energy sources, and predicted ability to use any kind of renewable fuel. The advantage of Adaptive Cycle Engines is greater whenever the powerplant has at least two distinct operating modes: one for high output, and one for high energy economy. This paper compares the well-to-wheels CO2 emissions and pre-tax costs when operating powerplants based on Adaptive Cycle Engines and on electric motors under several scenarios: passenger car, on-road heavy-duty vehicle, and light aircraft.
Technical Paper

Light Duty Engine Performance Characteristics with Dimethyl Ether and Propane

2024-04-09
2024-01-2126
The paper explores the performance characteristics of a compression ignition HYUNDAI 2.2L engine operating with Dimethyl Ether (DME). Test are carried out at three operating conditions that weigh heavily in the FTP75 certification cycle (1000rpm-12Nm, 1500rpm-50Nm, 2000rpm-100Nm). The engine features a high-pressure common rail fuel injection system designed to operate with liquified gases. The main component of the fuel system is a high-pressure pump that incorporates an electronic inlet metering valve commanded on a crank-angle base to control the rail pressure. The pump, which requires no pressure regulator, provides the flow needed to the injectors without flow returning to the inlet. This novel fueling system is leveraged in tests that are conducted to examine the impact of EGR, combustion phasing, injection pressure on efficiency and emissions. In addition, the impact of introducing 15% Propane by mass is examined.
Technical Paper

Correlated Simulation of Pseudo Transient Torque Converter Clutch Engagement Using Coupled Fluid Structure Interaction

2023-04-11
2023-01-0457
This investigation utilizes a correlated fluid-structure interaction (FSI) model of the torque converter and clutch assembly to perform a pseudo transient clutch engagement at steady state operating conditions. The pseudo transient condition consists of a series of nine steady state simulations that transition the torque converter clutch from fully released to near full lockup at a constant input torque and output speed representative of a highway cruising speed. The flow and pressured field of the torque converter torus and clutch are solved using a CFD model and then passed along to a transient structural model to determine the torque capacity of the lockup clutch. Bulk property assumptions regarding the friction material, deformation of the clutch plate, and deflection of supporting structures were made to simplify the model setup, run time, and solution convergence.
Technical Paper

Automated Vehicle Perception Sensor Evaluation in Real-World Weather Conditions

2023-04-11
2023-01-0056
Perception in adverse weather conditions is one of the most prominent challenges for automated driving features. The sensors used for mid-to-long range perception most impacted by weather (i.e., camera and LiDAR) are susceptible to data degradation, causing potential system failures. This research series aims to better understand sensor data degradation characteristics in real-world, dynamic environmental conditions, focusing on adverse weather. To achieve this, a dataset containing LiDAR (Velodyne VLP-16) and camera (Mako G-507) data was gathered under static scenarios using a single vehicle target to quantify the sensor detection performance. The relative position between the sensors and the target vehicle varied longitudinally and laterally. The longitudinal position was varied from 10m to 175m at 25m increments and the lateral position was adjusted by moving the sensor set angle between 0 degrees (left position), 4.5 degrees (center position), and 9 degrees (right position).
Journal Article

Zero Dimension Heat Release Modeling for Gasoline, Ethanol, Isobutanol and Diisobutylene Operating in Compression Ignition with Varying Injection Strategies

2023-04-11
2023-01-0188
Gasoline compression ignition shows great potential in reducing NOx and soot emissions with competitive thermal efficiency by leveraging the properties of gasoline fuels and the high compression ratio of compression ignition engines operating air-dilute. Meanwhile, its control becomes challenging due to not only the properties of different gasoline-type fuels but also the impacts of injection strategies on the in-cylinder reactivity. As such, a computationally efficient zero-dimension combustion model can significantly reduce the cost of control development. In this study, a previously developed zero-dimension combustion model for gasoline compression ignition was extended to multiple gasoline-type fuel blends and a port fuel injection/direct fuel injection strategy. Tests were conducted on a 12.4-liter heavy-duty engine with five fuel blends.
Technical Paper

Measurement of Hydrogen Direct Injection Jet Equivalence Ratio under Elevated Ambient Pressure Condition

2023-04-11
2023-01-0332
Owing to climate change issues caused by global warming, the role of alternative fuels, such as low-carbon and non-carbon fuels, is becoming increasingly important, particularly in the transportation sector. Therefore, hydrogen has emerged as a promising fuel for internal combustion engines because it does not emit carbon dioxide. Direct injection is mandatory for hydrogen-based internal combustion engines to mitigate backfires and low energy density. However, there is a lack of measurement of the equivalence ratio methodology because hydrogen has a higher diffusion rate than conventional fuels. The objective of this research is a feasibility study of laser-induced breakdown spectroscopy (LIBs) for measuring the equivalence ratio. The second harmonic ND-YAG laser was implemented to induce the atomic emission of hydrogen via the breakdown phenomenon. Simultaneously, the hydrogen jet structure was visualized in a constant volume vessel using Schlieren imaging.
Journal Article

On-Track Demonstration of Automated Eco-Driving Control for an Electric Vehicle

2023-04-11
2023-01-0221
This paper presents the energy savings of an automated driving control applied to an electric vehicle based on the on-track testing results. The control is a universal speed planner that analytically solves the eco-driving optimal control problem, within a receding horizon framework and coupled with trajectory tracking lower-level controls. The automated eco-driving control can take advantage of signal phase and timing (SPaT) provided by approaching traffic lights via vehicle-to-infrastructure (V2I) communications. At each time step, the controller calculates the accelerator and brake pedal position (APP/BPP) based on the current state of the vehicle and the current and future information about the surrounding environment (e.g., speed limits, traffic light phase).
Technical Paper

The Impact of Fuel Injection Strategies and Compression Ratio on Combustion and Performance of a Heavy-Duty Gasoline Compression Ignition Engine

2022-08-30
2022-01-1055
Gasoline compression ignition using a single gasoline-type fuel has been shown as a method to achieve low-temperature combustion with low engine-out NOx and soot emissions and high indicated thermal efficiency. However, key technical barriers to achieving low temperature combustion on multi-cylinder engines include the air handling system (limited amount of exhaust gas recirculation) as well as mechanical engine limitations (e.g. peak pressure rise rate). In light of these limitations, high temperature combustion with reduced amounts of exhaust gas recirculation appears more practical. Furthermore, for high temperature Gasoline compression ignition, an effective aftertreatment system allows high thermal efficiency with low tailpipe-out emissions. In this work, experimental testing was conducted on a 12.4 L multi-cylinder heavy-duty diesel engine operating with high temperature gasoline compression ignition combustion using EEE gasoline.
Technical Paper

Adaptive Cycle Engines: Results with 2nd Generation Combustion Model

2022-03-29
2022-01-0421
A more accurate combustion model, based on Fluent simulations including the effect of flame stretching and extinction, has been added to cycle and road simulations of an Adaptive Cycle Engine (ACE), where compressions and expansions do not follow a predefined sequence. Also, engine speed data from the Argonne Downloadable Dynamometer Database is used in the road simulations in lieu of the original constant-speed model. Results show a drop in predicted steady-state brake efficiency and bmep around 15% relative to the model using a standard Wiebe function for heat release rate. Performance on road cycles is not greatly affected by the delayed combustion since the relationship between expansion mass and work is largely unchanged. Even with the refined model, future ACE-equipped vehicles are expected to be competitive with electric powertrains in pre-tax cost and overall emissions.
Journal Article

Reduced Order Modeling of Engine Transients for Gasoline Compression Ignition Combustion Control

2020-09-15
2020-01-2000
This work focuses on reducing the computational effort of a 0-dimensional combustion model developed for compression ignition engines operating on gasoline-like fuels. As in-cylinder stratification significantly contributes to the ignition delay, which in turn substantially influences the entire gasoline compression ignition combustion process, previous modeling efforts relied on the results of a 1-dimensional spray model to estimate the in-cylinder fuel stratification. Insights obtained from the detailed spray model are leveraged within this approach and applied to a reduced order model describing the spray propagation. Using this computationally efficient combustion model showed a reduction in simulation time by three orders of magnitude for an entire engine cycle over the combustion model with the 1-dimensional spray model.
Technical Paper

Stability of Flowing Combustion in Adaptive Cycle Engines

2020-04-14
2020-01-0296
In an Adaptive Cycle Engine (ACE), thermodynamics favors combustion starting while the compressed, premixed air and fuel are still flowing into the cylinder through the transfer valve. Since the flow velocity is typically high and is predicted to reach sonic conditions by the time the transfer valve closes, the flame might be subjected to extensive stretch, thus leading to aerodynamic quenching. It is also unclear whether a single spark, or even a succession of sparks, will be sufficient to achieve complete combustion. Given that the first ACE prototype is still being built, this issue is addressed by numerical simulation using the G-equation model, which accounts for the effect of flame stretching, over a 3D domain representing a flat-piston ACE cylinder, both with inward- and outward-opening valves. A k-epsilon turbulence model was used for the highly turbulent flow field.
Technical Paper

Zero-Dimensional Heat Release Modeling Framework for Gasoline Compression-Ignition Engines with Multiple Injection Events

2019-09-09
2019-24-0083
A zero-dimensional heat release model was developed for compression ignition engines. This type of model can be utilized for parametric studies, off-line optimization to reduce experimental efforts as well as model-based control strategies. In this particular case, the combustion model, in a simpler form, will be used in future efforts to control the combustion in compression ignition engines operating on gasoline-like fuels. To allow for a realistic representation of the in-cylinder combustion process, a spray model has been employed to allow for the quantification of fuel distribution as well as turbulent kinetic energy within the injection spray. The combustion model framework is capable of reflecting premixed as well as mixing controlled combustion. Fuel is assigned to various combustion events based on the air-fuel mixture within the spray.
Technical Paper

The Adaptive Cycle Engine on Standard Duty Cycles

2019-04-02
2019-01-0232
Continuing research introduced at the 2018 WCX conference, this paper shows the result of simulations where a midsize sedan (1700 kg) fitted with an adaptive cycle engine and a CVT is operated over three standard duty cycles: US06, UDDS, and HWFET, and compared with the results obtained from other engine cycles installed on the same vehicle. Four different engine cycles are compared: conventional 4-stroke, 6-stroke cycle with no air storage, 6-stroke cycle with air storage, and fully adaptive cycle with air storage and a number of strokes determined by instantaneous demand and state of charge of the storage tank. Results show that the fully adaptive engine achieves a better mileage in all scenarios, closely followed by the partially adaptive 6-stroke cycle with storage. Gains over a conventional 4-stroke powerplant range from 3.4 mpg on the HWFET cycle, to 7.6 mpg on the UDDS cycle.
Technical Paper

Integration of an ORC Waste Heat Recovery with Electrification and Supercharging through Use of a Planetary Gear System for a Class 8 Tractor Application

2019-04-02
2019-01-0229
A novel approach to the Integration of Turbocompounding/WHR, Electrification and Supercharging technologies (ITES) to reduce fuel consumption in a medium heavy-duty diesel engine was previously published by FEV. This paper describes a modified approach to ITES to reduce fuel consumption on a heavy-duty diesel engine applied in a Class 8 tractor. The original implementation of the ITES incorporated a turbocompound turbine as the means for waste heat recovery. In this new approach, the turbocompound unit connected to the sun gear of the planetary gear set has been replaced by an organic Rankine cycle (ORC) turbine expander. The secondary compressor and the electric motor-generator are connected to the ring gear and the carrier gear respectively. The ITES unit is equipped with dry clutch and band brake allowing flexibility in mechanical and electrical integration of the ORC expander, secondary compressor and electric motor-generator to the engine.
Technical Paper

Optimizing Thermal Efficiency of a Multi-Cylinder Heavy Duty Engine with E85 Gasoline Compression Ignition

2019-04-02
2019-01-0557
Gasoline compression ignition (GCI) using a single gasoline-type fuel for direct/port injection has been shown as a method to achieve low-temperature combustion with low engine-out NOx and soot emissions and high indicated thermal efficiency. However, key technical barriers to achieving low temperature combustion on multi-cylinder engines include the air handling system (limited amount of exhaust gas recirculation (EGR)) as well as mechanical engine limitations (e.g. peak pressure rise rate). In light of these limitations, high temperature combustion with reduced amounts of EGR appears more practical. Previous studies with 93 AKI gasoline demonstrated that the port and direct injection strategy exhibited the best performance, but the premature combustion event prevented further increase in the premixed gasoline fraction and efficiency.
Technical Paper

Methods of Pegging Cylinder Pressure to Maximize Data Quality

2019-04-02
2019-01-0721
Engine cylinder pressure is traditionally measured with a piezo-electric pressure transducer, and as such, must be referenced or pegged to a known value. Frequently, the cylinder pressure is pegged to the pressure in the intake manifold plenum whereby the manifold absolute pressure (MAP) at the end of the intake stroke is measured and the cylinder pressure trace for the entire cycle is adjusted such that the cylinder pressure is set equal to the manifold pressure at the end of the intake stroke. However, any error in pegging induces an error in the cylinder pressure trace, which has an adverse effect on the entire combustion analysis. This research is focused on assessing the pegging error for several pegging methods across a wide range of engine operating conditions, and ultimately determining best practices to minimize error in pegging and the calculated combustion metrics. The study was conducted through 1D simulations using the commercially available GT-Power.
Technical Paper

Equation-Based Compressor and Turbine Modeling for Variable Geometry Turbochargers

2018-04-03
2018-01-0966
As modern engines are being downsized, turbochargers are becoming increasingly common. The operation of turbochargers is usually captured by a map provided by the manufacturer. However, the complexity of these maps makes them difficult to use for turbocharger estimation and control strategies. This work focuses on a method that is able to reduce the compressor and turbine maps from a cloud of points into a set of equations. This is accomplished by defining a series of non-dimensional and normalized variables that define a plane transformation. In this new plane, all the points of the map converge approximately into a line and the equation for this line can be found using a least square regression. While this strategy has been used previously, this work includes additional variables as well as an optimization process, which proved to be better at replicating the original maps than existing methods.
Technical Paper

The Adaptive Cycle Engines

2018-04-03
2018-01-0883
Traditionally, internal combustion engines follow thermodynamic cycles comprising a fixed number of crank revolutions, in order to accommodate compression of the incoming air as well as expansion of the combustion products. With the advent of computer-controlled valve trains, we now have the possibility of detaching compression from expansion events, thus achieving an “adaptive cycle” molded to the performance required of the engine at any given time. The adaptive cycle engine differs from split-cycle engines in that all phases of the cycle take place within the same cylinder, so that in an extreme case the gas contained in all cylinders can be undergoing expansion events, resulting in a large increase in power density over the conventional four-stroke and two-stroke cycles. Key to the adaptive cycle is the addition of a variable-timing “transfer” valve to each cylinder, plus a space for air storage between compression and expansion events.
Technical Paper

The Impact of Intake Valve Dynamics on Knock Propensity in a Dual-Fuel SI Engine

2017-10-08
2017-01-2236
In this study, the impact of the intake valve timing on knock propensity is investigated on a dual-fuel engine which leverages a low octane fuel and a high octane fuel to adjust the fuel mixture’s research octane rating (RON) based on operating point. Variations in the intake valve timing have a direct impact on residual gas concentrations due to valve overlap, and also affect the compression pressure and temperature by altering the effective compression ratio (eCR). In this study, it is shown that the fuel RON requirement for a non-knocking condition at a fixed operating point can vary significantly solely due to variations of the intake valve timing. At 2000 rpm and 6 bar IMEP, the fuel RON requirement ranges from 80 to 90 as a function of the intake valve timing, and the valve timing can change the RON requirement from 98 to 104 at 2000 rpm and 14 bar IMEP.
X