Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Runtime Safety Assurance of Autonomous Last-Mile Delivery Vehicles in Urban-like Environment

2024-07-02
2024-01-2991
The conventional process of last-mile delivery logistics often leads to safety problems for road users and a high level of environmental pollution. Delivery drivers must deal with frequent stops, search for a convenient parking spot and sometimes navigate through the narrow streets causing traffic congestion and possibly safety issues for the ego vehicle as well as for other traffic participants. This process is not only time consuming but also environmentally impactful, especially in low-emission zones where prolonged vehicle idling can lead to air pollution and to high operational costs. To overcome these challenges, a reliable system is required that not only ensures the flexible, safe and smooth delivery of goods but also cuts the costs and meets the delivery target.
Technical Paper

Enabling the security of global time in software-defined vehicles (SGTS, MACsec)

2024-07-02
2024-01-2978
The global time that is propagated and synchronized in the vehicle E/E architecture is used in safety-critical, security-critical, and time-critical applications (e.g., driver assistance functions, intrusion detection system, vehicle diagnostics, external device authentication during vehicle diagnostics, vehicle-to-grid and so on). The cybersecurity attacks targeting the global time result in false time, accuracy degradation, and denial of service as stated in IETF RFC 7384. These failures reduce the vehicle availability, robustness, and safety of the road user. IEEE 1588 lists four mechanisms (integrated security mechanism, external security mechanism, architectural solution, and monitoring & management) to secure the global time. AUTOSAR defines the architecture and detailed specifications for the integrated security mechanism "Secured Global Time Synchronization (SGTS)" to secure the global time on automotive networks (CAN, FlexRay, Ethernet).
Technical Paper

Simulating Cloud Environments of Connected Vehicles for Anomaly Detection

2024-07-02
2024-01-2996
The emergence of connected vehicles is driven by increasing customer and regulatory demands. To meet these, more complex software applications, some of which require service-based cloud and edge backends, are developed. Due to the short lifespan of software, it becomes necessary to keep these cloud environments and their applications up to date with security updates and new features. However, as new behavior is introduced to the system, the high complexity and interdependencies between components can lead to unforeseen side effects in other system parts. As such, it becomes more challenging to recognize whether deviations to the intended system behavior are occurring, ultimately resulting in higher monitoring efforts and slower responses to errors. To overcome this problem, a simulation of the cloud environment running in parallel to the system is proposed. This approach enables the live comparison between simulated and real cloud behavior.
Technical Paper

What is going on around the Automotive PowerNet - An overview of state-of-the-art PowerNet, insights into the new trends, and a simulation solution to keep pace with architectural changes.

2024-07-02
2024-01-2985
The automotive PowerNet is facing a major transformation. The three main drivers are: • Increasing power • Availability requirements • PowerNet complexity and cost reduction These driving factors result in a wide variety of possible future PowerNet topologies. The increasing power demand is among others caused by the progressive electrification of formerly mechanical components and the trend of increasing number of comfort loads. This leads to a steady increase in installed electrical power. X-by-wire systems and autonomous driving functions result in higher availability requirements. As a result, the power supply of all safety-critical loads must always be kept sufficiently stable. To reduce costs and increase reliability, the car manufacturers aim to reduce the complexity of the PowerNet System, including the wiring harness and the controller network. The wiring harness e.g., is currently one of the costliest parts of modern cars. These challenges are met with different concepts.
Technical Paper

Designing a Prototype of a Mobile Charging Robot for Charging of Electric Vehicles

2024-07-02
2024-01-2990
As the market for electric vehicles grows, so does the demand for appropriate charging infrastructure. The availability of sufficient charging points is essential to increase public acceptance of electric vehicles and to avoid the so-called “charging anxiety”. However, the charging stations currently installed may not be able to meet the full charging demand, especially in areas where there is a general lack of grid infrastructure, or where the fluctuating nature of charging demand requires flexible, high-power charging solutions that do not require expensive grid extensions. In such cases, the use of mobile charging stations provides a good opportunity to complement the existing charging network. This paper presents a prototype of a mobile charging solution that is being developed as part of an ongoing research project, and discusses different use cases.
Technical Paper

Comparison of Performance and Efficiency of different Refrigerants at high load Conditions and their Impact on CO2eq Emissions

2024-06-12
2024-37-0029
For battery-electric vehicles (BEVs), the climate control and the driving range are crucial criteria in the ongoing electrification of automobiles in Europe towards the targeted carbon neutrality of the automotive industry. The thermal management system makes an important contribution to the energy efficiency and the cabin comfort of the vehicle. In addition to the system architecture, the refrigerant is crucial to achieve high cooling and heating performance while maintaining high efficiency and thus low energy consumption. Due to the high efficiency requirements for the vehicle, future system architectures will largely be heat pump systems. The alternative refrigerant R-474A based on the molecule R-1132(E) achieved top performance for both parameters in various system and vehicle tests.
Technical Paper

New Equivalent Static Load (ESL) Creation Procedure for Complete Vehicle

2024-06-12
2024-01-2944
By analyzing the dynamic distortion in all body closure openings in a complete vehicle, a better understanding of the body characteristics can be achieved compared to traditional static load cases such as static torsional body stiffness. This is particularly relevant for non-traditional vehicle layouts and electric vehicle architectures. The body response is measured with the so-called Multi Stethoscope (MSS) when driving a vehicle on a rough pavé road (cobble stone). The MSS is measuring the distortion in each opening in two diagonals. During the virtual development, the distortion is described by the relative displacement in diagonal direction in time domain using a modal transient analysis. The results are shown as Opening Distortion Fingerprint ODF and used as assessment criteria within Solidity and Perceived Quality. By applying the Principal Component Analysis (PCA) on the time history of the distortion, a Dominant Distortion Pattern (DDP) can be identified.
Technical Paper

A Non-Intrusive Approach for Measuring Data and Control Coupling b/w Software Components: Addressing the Challenges of DO-178C Compliance, Verification and Certification

2024-06-01
2024-26-0464
Software certification guidelines, such as RTCA DO-178C, mandate the analysis of data and control coupling (DC/CC) in safety-critical avionics software using requirement-based testing. The intention of this analysis is to ensure correctness in the interactions and dependencies between software components. The shift from confirming the coupling (as in DO-178B) to verifying the exercising of the coupling (as introduced in DO-178C) transitions the DC/CC objective from an analytical exercise against the test design to a measurement exercise against the test execution. Current methodologies for measuring Data Coupling and Control Coupling (DC/CC) rely on source code instrumentation, which embeds code to record coverage information during requirements-based testing. However, this approach has significant drawbacks. Primarily, it necessitates executing tests on both the instrumented and non-instrumented versions of the code, ensuring their outputs match.
Technical Paper

Model-based Knowledge Management in HV Battery Development

2024-05-06
2024-01-2902
In the dynamic landscape of battery development, the quest for improved energy storage and efficiency has become paramount. The contemporary energy transition, coupled with growing demands for electric vehicles, renewable energy sources, and portable electronic devices, has underscored the critical role that batteries play in our modern world. To navigate this challenging terrain and harness the full potential of battery technology, a well-defined and comprehensive data strategy resp. knowledge management strategy are indispensable. Conversely, the imminent and rapid progression of artificial intelligence (AI) is poised to have a substantial impact on the forthcoming landscape of work and the methodologies organizations employ for the management of their knowledge management (KM) procedures. Conventional KM endeavors encompass a spectrum of activities such as the creation, transmission, retention, and evaluation of an enterprise’s knowledge over the entire knowledge lifecycle.
Technical Paper

Inherent Diverse Redundant Safety Mechanisms for AI-Based Software Elements in Automotive Applications

2024-04-09
2024-01-2864
This paper explores the role and challenges of Artificial Intelligence (AI) algorithms, specifically AI-based software elements, in autonomous driving systems. These AI systems are fundamental in executing real-time critical functions in complex and high-dimensional environments. They handle vital tasks like multi-modal perception, cognition, and decision-making tasks such as motion planning, lane keeping, and emergency braking. A primary concern relates to the ability (and necessity) of AI models to generalize beyond their initial training data. This generalization issue becomes evident in real-time scenarios, where models frequently encounter inputs not represented in their training or validation data. In such cases, AI systems must still function effectively despite facing distributional or domain shifts. This paper investigates the risk associated with overconfident AI models in safety-critical applications like autonomous driving.
Technical Paper

Rapid Development of an Autonomous Vehicle for the SAE AutoDrive Challenge II Competition

2024-04-09
2024-01-1980
The SAE AutoDrive Challenge II is a four-year collegiate competition dedicated to developing a Level 4 autonomous vehicle by 2025. In January 2023, the participating teams each received a Chevy Bolt EUV. Within a span of five months, the second phase of the competition took place in Ann Arbor, MI. The authors of this contribution, who participated in this event as team Wisconsin Autonomous representing the University of Wisconsin–Madison, secured second place in static events and third place in dynamic events. This has been accomplished by reducing reliance on the actual vehicle platform and instead leveraging physical analogs and simulation. This paper outlines the software and hardware infrastructure of the competing vehicle, touching on issues pertaining sensors, hardware, and the software architecture employed on the autonomous vehicle. We discuss the LiDAR-camera fusion approach for object detection and the three-tier route planning and following systems.
Technical Paper

Road Recognition Technology Based on Intelligent Tire System Equipped with Three-Axis Accelerometer

2024-04-09
2024-01-2295
Under complex and extreme operating conditions, the road adhesion coefficient emerges as a critical state parameter for tire force analysis and vehicle dynamics control. In contrast to model-based estimation methods, intelligent tire technology enables the real-time feedback of tire-road interaction information to the vehicle control system. This paper proposes an approach that integrates intelligent tire systems with machine learning to acquire precise road adhesion coefficients for vehicles. Firstly, taking into account the driving conditions, sensor selection is conducted to develop an intelligent tire hardware acquisition system based on MEMS (Micro-Electro-Mechanical Systems) three-axis acceleration sensors, utilizing a simplified hardware structure and wireless transmission mode. Secondly, through the collection of real vehicle experiment data on different road surfaces, a dataset is gathered for machine learning training.
Technical Paper

Protection Implementation of Electric Power Steering Based on Functional Safety

2024-04-09
2024-01-2305
To reduce the harm caused by the failure of electronic and electrical system, the application of ISO 26262 functional safety standard in the automotive industry is more and more widespread. As a critical safety-related electronic and electrical system in automobile, electric power steering is very important and necessary to meet the requirements of functional safety. This paper introduces the main development activities of functional safety at software level. In order to realize the purpose of freedom from interference in memory, the safety mechanism of memory protection is proposed in software safety analysis. The memory protection is realized in AUTOSAR architecture by configuration.
Technical Paper

Elucidation of Sealing Mechanism of Novel Acrylate Liquid Based BluSealTM Wire Harness Splice Sealing Technology

2024-04-09
2024-01-2356
Unlike conventional heat shrink tubes or enclosure systems which only seals wires and splices on the outside, a novel Acrylate based sealing technology developed and introduced by Eurotech is a low viscosity fluid formulated to be applied to the splices either in liquid droplets or by dipping, utilizes fast capillary-wicking action and quick self-cure inside the wires to form a robust, cost effective, flexible, impenetrable seal to prevent moisture damage of wire harnesses and associated electrical components. This technology is an enabler of new wire harness architectures currently limited by the shortcomings of conventional sealing products such as heat shrink tubes which come up short when the splice configurations or geometries become too complex or difficult for sealing from the outside.
Technical Paper

Research on Insulation Resistance Monitoring and Electrical Performance Evaluation into Permanent Magnet Synchronous Motor Considering Humidity and Heat Factors

2024-04-09
2024-01-2207
Focused on the permanent magnet synchronous motor (PMSM) used in electric, this paper proposes an online insulation testing method based on voltage injection under high-temperature and high-humidity conditions. The effect of constant humidity and temperature on the insulation performance has been also studied. Firstly, the high-voltage insulation structure and principle of PMSM are analyzed, while an electrical insulation testing method considered constant humidity and temperature is proposed. Finally, a temperature and humidity experimental cycling test is carried out on a certain prototype PMSM, taking heat conduction and radiation models, water vapor, and partial discharge into account. The results show that the electrical insulation performance of the motor under constant humidity and temperature operation environment exhibits a decreasing trend. This study can provide theoretical and practical references for the reliable durability design of PMSM.
Technical Paper

Integrated Bracket for Rain Light Sensor/ADAS/Auto-Dimming IRVM with provision of mounting for Aesthetic Cover

2024-04-09
2024-01-2224
Plastic design is one of the upcoming fields of interest when it comes to weight optimization, sustainability, strength, and overall aesthetics of an automobile. What is often ignored is the amount of flexibility a plastic designer has, of integrating and packaging various components of an automobile into a single part and still make it an integral part of its complex aesthetics. This paper highlights upon one such part that is being developed: An integrated bracket which packages ADAS camera, Rain Light Sensor, and an Auto-dimming IRVM. Apart from packaging the mentioned components, this bracket also has mounting provisions for an aesthetic cover (also referred to as beauty cover). The objective of this paper is to highlight the importance of integration of several parts into a single part for packaging multiple components that need to be placed in a close proximity with each other.
Technical Paper

Research on Voltage Control of Dual Motor Hybrid System

2024-04-09
2024-01-2219
The paper introduces two methods for controlling motor voltage. One method requires the implementation of boost hardware, while the other allows for voltage control in battery failure mode without any additional hardware requirements. The boost voltage strategy for the hybrid system is based on managing boost modes, determining target voltages, and implementing PI control. The boost mode control includes different modes such as initial mode, normal mode, shutdown mode, and fault mode. Determining the boost target voltage involves regulating the boost converter with variable voltages depending on the operating states of the motor and generator. The second voltage control method without boost hardware is proposed in order to ensure that the vehicle can still function like a traditional car even under abnormal conditions of high-voltage battery failure in micro-mixing systems.
Technical Paper

Development of Robust Traction Power Inverter Residing in Integrated Power Electronics for Ultium Electric Vehicles

2024-04-09
2024-01-2211
General Motors (GM) is working towards a future world of zero crashes, zero emissions and zero congestion. It’s “Ultium” platform has revolutionized electric vehicle drive units to provide versatile yet thrilling driving experience to the customers. Three variants of traction power inverter modules (TPIMs) including a dual channel inverter configuration are designed in collaboration with LG Magna e-Powertrain (LGM). These TPIMs are integrated with other power electronics components inside Integrated power electronics (IPE) to eliminate redundant high voltage connections and increase power density. The developed power module from LGM has used state-of-the art sintering technology and double-sided cooled structure to achieve industry leading performance and reliability. All the components are engineered with high level of integration skills to utilize across TPIM variants.
Technical Paper

A New U-Net Speech Enhancement Framework Based on Correlation Characteristics of Speech

2024-04-09
2024-01-2015
As a key component of in-vehicle intelligent voice technology, speech enhancement can extract clean speech signals contaminated by environmental noise to improve the perceptual quality and intelligibility of speech. It has extensive applications in the field of intelligent car cabins. Although some end-to-end speech enhancement methods based on time domain have been proposed, there is often limited consideration given to designing model architectures based on the characteristics of the speech signal. In this paper, we propose a new U-Net based speech enhancement framework that utilizes the temporal correlation of speech signals to reconstruct higher-quality and more intelligible clean speech.
Technical Paper

Vehicle to Load (V2L) Scalable Architecture with On-Board Smart Power Panel Technology

2024-04-09
2024-01-2030
Modern automotive industry field is recently moving to more electrification level, so the presence of Battery Electric Vehicles (BEVs) is constantly increasing, along with charging technology evolution. Typically, BEVs do not use a significant portion of their battery’s capacity in day-to-day travel, which means their most valuable asset, the battery, sits idle during most of its life. Vehicle to Load (V2L) feature enables the transfer of energy from vehicle to the external loads (like utility tools, dryer, camping equipment or any other electrical appliance) which is connected to the power socket present in the Power Panel to perform AC Discharging. V2L technology lets consumers get more energy from a vehicle, even when it is turned off, improving consumer appeal. Bottomline, consumers can use this on-board Power Panel like a normal portable generator.
X