Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Thermal Management System for Battery Electric Heavy-Duty Trucks

2024-07-02
2024-01-2971
On the path to decarbonizing road transport, electric commercial vehicles will play a significant role. The first applications were directed to the smaller trucks for distribution traffic with relatively moderate driving and range requirements, but meanwhile, the first generation of a complete portfolio of truck sizes is developed and available on the market. In these early applications, many compromises were accepted to overcome component availability, but meanwhile, the supply chain can address the specific needs of electric trucks. With that, the optimization towards higher usability and lower costs can be moved to the next level. Especially for long-haul trucks, efficiency is a driving factor for the total costs of ownership. Besides the propulsion system, all other systems must be optimized for higher efficiency. This includes thermal management since the thermal management components consume energy and have a direct impact on the driving range.
Technical Paper

Automated AI-based Annotation Framework for 3D Object Detection from LIDAR Data in Industrial Areas.

2024-07-02
2024-01-2999
Autonomous Driving is being utilized in various settings, including indoor areas such as industrial halls. Additionally, LIDAR sensors are currently popular due to their superior spatial resolution and accuracy compared to RADAR, as well as their robustness to varying lighting conditions compared to cameras. They enable precise and real-time perception of the surrounding environment. Several datasets for on-road scenarios such as KITTI or Waymo are publicly available. However, there is a notable lack of open-source datasets specifically designed for industrial hall scenarios, particularly for 3D LIDAR data. Furthermore, for industrial areas where vehicle platforms with omnidirectional drive are often used, 360° FOV LIDAR sensors are necessary to monitor all critical objects. Although high-resolution sensors would be optimal, mechanical LIDAR sensors with 360° FOV exhibit a significant price increase with increasing resolution.
Technical Paper

Numerical Investigation of Injection and Mixture Formation in Hydrogen Combustion Engines by Means of Different 3D-CFD Simulation Approaches

2024-07-02
2024-01-3007
For the purpose of achieving carbon-neutrality in the mobility sector by 2050, hydrogen can play a crucial role as an alternative energy carrier, not only for direct usage in fuel cell-powered vehicles, but also for fueling internal combustion engines. This paper focuses on the numerical investigation of high-pressure hydrogen injection and the mixture formation inside a high-tumble engine with a conventional liquid fuel injector for passenger cars. Since the traditional 3D-CFD approach of simulating the inner flow of an injector requires a very high spatial and temporal resolution, the enormous computational effort, especially for full engine simulations, is a big challenge for an effective virtual development of modern engines. An alternative and more pragmatic lagrangian 3D-CFD approach offers opportunities for a significant reduction in computational effort without sacrificing reliability.
Technical Paper

Next-gen battery strategies 2027+: Potentials and challenges for future battery designs and diversification in product portfolios to serve a large bandwidth of market applications

2024-07-02
2024-01-3018
The pace of innovations in battery development is revolutionizing the landscape and opportunities for energy storage applications leading to a stronger market segmentation enabling a better suitability to fulfill specific application requirements. For automotive applications, several approaches to increase energy densities, to improve fast charging performance, and to reduce cost on a pack level are considered. Among them, a promising example is the direct integration of battery cells into the battery pack (Cell-to-pack; CTP) or vehicle (Cell-to-chassis, CTC) to increase energy densities and to reduce costs, as already commercialized by Tesla, CATL and others. In the pack development, especially Asian players are one of the frontrunners, where e.g., hybrid cell battery systems with a mixture of cells with different cathode chemistries as introduced by NIO, are experiencing a high interest of the market.
Technical Paper

Supercharger Boosting on H2 ICE for Heavy Duty applications

2024-07-02
2024-01-3006
Commercial vehicle powertrain is called to respect a challenging roadmap for CO2 emissions reduction, quite complex to achieve just improving technologies currently on the market. In this perspective alternative solutions are gaining interest, and the use of green H2 as fuel for ICE is considered a high potential solution with fast and easy adoption. NOx emission is still a problem for H2 ICE and can be managed operating the engine with lean air fuel ratio all over the engine map. This combustion strategy will challenge the boosting system as lean H2 combustion will require quite higher air flow compared to diesel for the same power density in steady state. Similar problem will show up in transient response particularly when acceleration starts from low load and the exhaust gases enthalpy is very poor and insufficient to spin the turbine. The analysis presented in this paper will show and quantify the positive impact that a supercharger has on both the above mentions problems.
Technical Paper

Potential of Serial Hybrid Powertrain Concepts towards decarbonizing the Off-Highway Machinery

2024-06-12
2024-37-0018
Today’s engines used in Agriculture, Mining and Construction are designed for robustness and cost. Here, the Diesel powertrain is the established mainstream solution, offering long operation times without refueling at any desired power rating. In view of the steps towards Carbon Neutrality by 2050 this segment of the Transportation Sector needs to reduce its CO2 emissions. Currently, the EU and US emissions legislations (EU Stage V / EPA Tier4) do not include a CO2 reduction scheme but is expected to change with the next update towards EU Stage VI / EPA Tier5 coming into effect 2030 and after. Larger power and operation range still require the use of renewable, liquid fuels or hydrogen. The cost-up of such fuels could be counterbalanced by more efficient engines in combination with a hybridized powertrain.
Technical Paper

Advanced H2 ICE development aiming for full compatibility with classical engines while ensuring zero-impact tailpipe emissions

2024-06-12
2024-37-0006
The societies around the world remain far from meeting the agreed primary goal outlined under the 2015 Paris Agreement on climate change: reducing greenhouse gas (GHG) emissions to keep global average temperature rise to well below 20°C by 2100 and making every effort to stay underneath of a 1.5°C elevation. Current emissions are rebounding from a brief decline during the economic downturn related to the Covid-19 pandemic. To get back on track to support the realization of the goal of the Paris Agreement, research suggests that GHG emissions should be roughly halved by 2030 on a trajectory to reach net zero by around mid-century.2 Although these are averaged global targets, every sector and country or market can and must contribute, especially higher-income and more developed countries bear the greater capacity to act. In 2020 direct tailpipe emissions from transport represented around 8 GtC02e, or nearly 15% of total emissions.
Technical Paper

A Low-Cost System for Road Induced Tire Cavity Noise Control (RTNC)

2024-06-12
2024-01-2961
The transition from ICE to electric power trains in new vehicles along with the application of advanced active and passive noise reduction solutions has intensified the perception of noise sources not directly linked to the propulsion system. This includes road noise as amplified by the tire cavity resonance. This resonance mainly depends on tire geometry, air temperature inside the tire and vehicle speed and is increasingly audible for larger wheels and heavier vehicles, as they are typical for current electrical SUV designs. Active technologies can be applied to significantly reduce narrow band tire cavity noise with low costs and minimal weight increase. Like ANC systems for ICE powertrains, they make use of the audio system in the vehicle. In this paper, a novel low-cost system for road induced tire cavity noise control (RTNC) is presented that reduces the tire cavity resonance noise inside a car cabin.
Technical Paper

Making modal analysis easy and more reliable – Reference points identification by experimental prestudy

2024-06-12
2024-01-2931
Though modal analysis is a common tool to evaluate the dynamic properties of a structure, there are still many individual decisions to be made during the process which are often based on experience and make it difficult for occasional users to gain reliable and correct results. One of those experience-based choices is the correct number and placement of reference points. This decision is especially important, because it must be made right in the beginning of the process and a wrong choice is only noticeable in the very end of the process. Picking the wrong reference points could result in incomplete modal analysis outcomes, as it might make certain modes undetectable, compounded by the user's lack of awareness about these missing modes. In the paper an innovative approach will be presented to choose the minimal number of mandatory reference points and their placement.
Technical Paper

Automatic Maneuver Detection in Flight Data using Wavelet Transform and Deep Learning Algorithms

2024-06-01
2024-26-0462
The evaluation of aircraft characteristics through flight test maneuvers is fundamental to aviation safety and understanding flight attributes. This research project proposes a comprehensive methodology to detect and analyze aircraft maneuvers using full flight data, combining signal processing and machine learning techniques. Leveraging the Wavelet Transform, we unveil intricate temporal details within flight data, uncovering critical time-frequency insights essential for aviation safety. The integration of Long Short-Term Memory (LSTM) models enhances our ability to capture temporal dependencies, surpassing the capabilities of machine learning in isolation. These extracted maneuvers not only aid in safety but also find practical applications in system identification, air-data calibration, and performance analysis, significantly reducing pre-processing time for analysts.
Technical Paper

Generating Reduced-Order Image Data and Detecting Defect Map on Structural Components using Ultrasonic Guided Wave Scan

2024-06-01
2024-26-0416
The paper presents a theoretical framework for the detection and first-level preliminary identification of potential defects on aero-structure components while employing ultrasonic guided wave based structural health monitoring strategies, systems and tools. In particular, we focus our study on ground inspection using laser-Doppler scan of surface velocity field, which can also be partly reconstructed or monitored using point sensors and actuators on-board structurally integrated. Using direct wave field data, we first question the detectability of potential defects of unknown location, size, and detailed features. Defects could be manufacturing defects or variations, which may be acceptable from design and qualification standpoint; however, those may cause significant background signal artifacts in differentiating structure progressive damage or sudden failure like impact-induced damage and fracture.
Technical Paper

Optimizing Carbon Monoxide Emission Reduction Using Rice Husk Activated Carbon in Automobile Exhaust Systems

2024-04-29
2024-01-5054
This research effort is to optimize the conditions to minimize carbon monoxide (CO) gas emissions utilizing activated carbon derived from rice husks, an abundant agricultural waste. In the automobile industry, addressing vehicular emissions is crucial due to environmental ramifications and stringent regulatory mandates. This study presents an innovative and potentially cost-effective solution to capture CO emissions, mainly from motorcycles. The eco-friendly nature of using rice husks and the detailed findings on optimal conditions (20 m/s gas flow rate, 0.47 M citric acid concentration, and 30 g mass of activated carbon) make this research invaluable. These conditions achieved a commendable CO adsorption rate of 54.96 ppm over 1250 s. Essentially, the insights from this research could spearhead the development of sustainable automobile exhaust systems.
Technical Paper

Path-Tracking Control for Four-Wheel Steer/Drive Agricultural Special Electric Vehicles Considering Stability

2024-04-25
2024-01-5051
With the modernization of agriculture, the application of unmanned agricultural special vehicles is becoming increasingly widespread, which helps to improve agricultural production efficiency and reduce labor. Vehicle path-tracking control is an important link in achieving intelligent driving of vehicles. This paper designs a controller that combines path tracking with vehicle lateral stability for four-wheel steer/drive agricultural special electric vehicles. First, based on a simplified three-degrees-of-freedom vehicle dynamics model, a model predictive control (MPC) controller is used to calculate the front and rear axle angles. Then, according to the Ackermann steering principle, the four-wheel independent angles are calculated using the front and rear axle angles to achieve tracking of the target trajectory.
Technical Paper

A study on estimation of stuck probability in off-road based on AI

2024-04-09
2024-01-2866
After the COVID-19 pandemic, leisure activities and cultures have undergone significant transformations. Particularly, there has been an increased demand for outdoor camping. Consequently, the need for capabilities that allow vehicles to navigate not only paved roads but also unpaved and rugged terrains has arisen. In this study, we aim to address this demand by utilizing AI to introduce a 'Stuck Probability Estimation Algorithm' for vehicles on off-road. To estimate the 'Stuck Probability' of a vehicle, a mathematical model representing vehicle behavior is essential. The behavior of off-road driving vehicles can be characterized in two main aspects: firstly, the harshness of the terrain (how uneven and rugged it is), and secondly, the extent of wheel slip affecting the vehicle's traction.
Technical Paper

Simulation of Vehicle Speed Sensor Data for Use in Heavy Vehicle Event Data Recorder Testing

2024-04-09
2024-01-2889
Heavy Vehicle Event Data Recorders (HVEDRs) have the ability to capture important data surrounding an event such as a crash or near crash. Efforts by many researchers to analyze the capabilities and performance of these complex systems can be problematic, in part, due to the challenges of obtaining a heavy truck, the necessary space to safely test systems, the inherent unpredictability in testing, and the costs associated with this research. In this paper, a method for simulating vehicle speed sensor (VSS) inputs to HVEDRs to trigger events is introduced and validated. Full-scale instrumented testing is conducted to capture raw VSS signals during steady state and braking conditions. The recorded steady state VSS signals are injected into the HVEDR along with synthesized signals to evaluate the response of the HVEDR. Brake testing VSS signals are similarly captured and injected into the HVEDR to trigger an event record.
Technical Paper

Analysis of Low-Frequency Brake Noise for Drum Brakes on Semi-Trailers

2024-04-09
2024-01-2895
A road test on semi-trailers is carried out, and accelerations of some characteristic points on the braking system,axles,and truck body is measured,also brake pressure and noise around the support frame is acquired.The measured data was analyzed to determine the causes of the brake noise, and the mechanism of the noise of the drum brake of semi-trailers during low-speed braking was investigated. The following conclusions are obtained: (1) Brake noise of the drum brake of the semi-trailer at low-frequency is generated from vibrations of the brake shoes, axle, and body, and the vibration frequency is close to 2nd natural frequency of the axle. (2) Brake noise is generated from stick-slip motion between the brake shoes and the brake drum, where the relative motion between the brake drum and the brake shoes is changed alternately with sliding and sticking, resulting in sudden changes in acceleration and shock vibration.
Technical Paper

An Evaluation of the Performance of the Bendix Wingman Fusion G1 Collision Mitigation System in a 2017 Kenworth T680

2024-04-09
2024-01-2893
The Bendix Wingman Fusion – a radar and camera collision mitigation system (CMS) available on commercial vehicles – was evaluated in two separate test series to determine its performance in simulated rear collision scenarios. In the first series of tests, evaluations were conducted in daytime, nighttime, and rainy conditions between 15 to 58 miles per hour (mph) to evaluate the performance of the audible and visual forward collision warning (FCW) system in a first-generation Bendix Wingman Fusion CMS while approaching a stationary live vehicle target (SLVT) in a 2017 Kenworth T680. A second test series was conducted with a 2017 Kenworth T680 traveling at 50 mph in daytime conditions approaching a decelerating vehicle to evaluate the Bendix Wingman Fusion CMS on the truck. Both test series sought to determine the maximum distance the system would warn prior to the test driver swerving around the SLVT or moving vehicle target.
Technical Paper

A Systematic Approach for Creation of SOTIF’s Unknown Unsafe Scenarios: An Optimization based Method

2024-04-09
2024-01-1966
Verification and validation (V&V) of autonomous vehicles (AVs) is a challenging task. AVs must be thoroughly tested, to ensure their safe functionality in complex traffic situations including rare but safety-relevant events. Furthermore, AVs must mitigate risks and hazards that result from functional insufficiencies, as described in the Safety of the Intended Functionality (SOTIF) standard. SOTIF analysis includes iterative identification of driving scenarios that are not only unsafe, but also unknown. However, identifying SOTIF’s unknown-unsafe scenarios is an open challenge. In this paper we proposed a systematic optimization-based approach for identification of unknown-unsafe scenarios. The proposed approach consists of three main steps including data collection, feature extraction and optimization towards unknown unsafe scenarios.
Technical Paper

Research on Vehicle Type Recognition Based on Improved YOLOv5 Algorithm

2024-04-09
2024-01-1992
As a key technology of intelligent transportation system, vehicle type recognition plays an important role in ensuring traffic safety,optimizing traffic management and improving traffic efficiency, which provides strong support for the development of modern society and the intelligent construction of traffic system. Aiming at the problems of large number of parameters, low detection efficiency and poor real-time performance in existing vehicle type recognition algorithms, this paper proposes an improved vehicle type recognition algorithm based on YOLOv5. Firstly, the lightweight network model MobileNet-V3 is used to replace the backbone feature extraction network CSPDarknet53 of the YOLOv5 model. The parameter quantity and computational complexity of the model are greatly reduced by replacing the standard convolution with the depthwise separable convolution, and enabled the model to maintain higher accuracy while having faster reasoning speed.
Technical Paper

Torque Vectoring for Lane-Changing Control during Steering Failures in Autonomous Commercial Vehicles

2024-04-09
2024-01-2328
Lane changing is an essential action in commercial vehicles to prevent collisions. However, steering system malfunctions significantly escalate the risk of head-on collisions. With the advancement of intelligent chassis control technologies, some autonomous commercial vehicles are now equipped with a four-wheel independent braking system. This article develops a lane-changing control strategy during steering failures using torque vectoring through brake allocation. The boundaries of lane-changing capabilities under different speeds via brake allocation are also investigated, offering valuable insights for driving safety during emergency evasions when the steering system fails. Firstly, a dual-track vehicle dynamics model is established, considering the non-linearity of the tires. A quintic polynomial approach is employed for lane-changing trajectory planning. Secondly, a hierarchical controller is designed.
X