Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Effect of Dithering on post-catalyst exhaust gas composition and on short time regeneration of deactivated PdO/Al2O3 catalysts under real engine conditions

2024-06-12
2024-37-0002
Fossil fuels such as natural gas used in engines still play the most important role worldwide despite such measures as the German energy transition which however is also exacerbating climate change as a result of carbon dioxide emissions. One way of reducing carbon dioxide emissions is the choice of energy sources and with it a more favourable chemical composition. Natural gas, for instance, which consist mainly of methane, has the highest hydrogen to carbon ratio of all hydrocarbons, which means that carbon dioxide emissions can be reduced by up to 35% when replacing diesel with natural gas. Although natural gas engines show an overall low CO2 and pollutant emissions level, methane slip due to incomplete combustion occurs, causing methane emissions with a more than 20 higher global warming potential than CO2.
Technical Paper

Modeling and Analysis of the Hydrogen Production via Steam Reforming of Ethanol, Methanol, and Methane Fuels

2024-04-09
2024-01-2179
The global transition to alternative power sources, particularly fuel cells, hinges on the cost-effective production and distribution of hydrogen fuel. While green hydrogen produced through water electrolysis using renewable energy sources holds immense promise, it currently falls short of meeting the burgeoning demand for hydrogen. To address this challenge, alternative methods, such as steam reforming and partial oxidation of hydrocarbon fuels with integrated carbon capture, are poised to bridge the gap between supply and demand in the near to midterm. Steam reforming of methane is a well-established technology with a proven track record in the chemical industry, serving as a dependable source of hydrogen feedstock for decades. However, to meet the demand for efficient hydrogen storage, handling, and onboard reforming, researchers are increasingly exploring liquid hydrocarbon fuels at room temperature, such as methanol and ethanol.
Technical Paper

Sulfur Impact on Methane Steam Reforming over the Stoichiometric Natural Gas Three-Way Catalyst

2024-04-09
2024-01-2633
The steam reforming of CH4 plays a crucial role in the high-temperature activity of natural gas three-way catalysts. Despite existing reports on sulfur inhibition in CH4 steam reforming, there is a limited understanding of sulfur storage and removal dynamics under various lambda conditions. In this study, we utilize a 4-Mode sulfur testing approach to elucidate the dynamics of sulfur storage and removal and their impact on three-way catalyst performance. We also investigate the influence of sulfur on CH4 steam reforming by analyzing CH4 conversions under dithering, rich, and lean reactor conditions. In the 4-Mode sulfur test, saturating the TWC with sulfur at low temperatures emerges as the primary cause of significant three-way catalyst performance degradation. After undergoing a deSOx treatment at 600 °C, NOx conversions were fully restored, while CH4 conversions did not fully recover.
Technical Paper

Experimental Investigation on Biogas Operated Electric Vehicle Charging Station

2023-11-10
2023-28-0178
Biogas is developing as a possible replacement for fossil fuels as the globe shifts to sustainable energy sources. Organic waste, including food waste, agricultural waste, and sewage, decomposes to produce biogas. Biogas is a fuel that can be used to create electricity, heat homes, and power vehicles. The popularity of electric cars (EVs) is rising as a result of their zero emissions. EVs and biogas can work together to create a sustainable transportation option. The viability of EV charging stations powered by biogas is the main topic of this techno-economic inquiry. The study involves the evaluation of the technical and economic elements of the proposed system. The technical aspects cover power generation, the EV charging system, the biogas storage system, the biogas production process, and the biogas purification process. The capital cost, operating cost, and revenue from the charging station are all considered economic factors.
Technical Paper

Efficiency Enhancement and Lean Combustion Performance Improvement by Argon Power Cycle in a Methane Direct Injection Engine

2023-10-31
2023-01-1618
Argon Power Cycle (APC) is an innovative future potential power system for high efficiency and zero emissions, which employs an Ar-O2 mixture rather than air as the working substance. However, APC hydrogen engines face the challenge of knock suppression. Compared to hydrogen, methane has a better anti-knock capacity and thus is an excellent potential fuel for APC engines. In previous studies, the methane is injected into the intake port. Nevertheless, for lean combustion, the stratified in-cylinder mixture formed by methane direct injection has superior combustion performances. Therefore, based on a methane direct injection engine at compression ratio = 9.6 and 1000 r/min, this study experimentally investigates the effects of replacing air by an Ar-O2 mixture (79%Ar+21%O2) on thermal efficiencies, loads, and other combustion characteristics under different excess oxygen ratios. Meanwhile, the influences of varying the methane injection timing are studied.
Technical Paper

Impact of Hydrogen Energy Fractions on Cycle-to-Cycle Variations in Biogas-Fueled Spark Ignition Engine

2023-10-25
2023-01-5075
The limitations related to the cost-effectiveness and technological feasibility of upgrading biogas to bio-methane for rural power generation applications have prompted researchers to explore alternative approaches for improving the quality of biogas fuel. This study focuses on evaluating the effect of hydrogen enrichment on combustion characteristics and cycle-to-cycle combustion variations in a single-cylinder spark ignition engine fueled with biogas (60% CH4 and 40% CO2). The engine was run at a constant operating load of 6 Nm, with a compression ratio of 10:1 and an engine speed of 1500 rpm. To establish a baseline for comparison, engine characteristics were initially assessed using pure methane fuel. Subsequently, the share of hydrogen in the biogas fuel mixture was incrementally increased on the volumetric basis from 0% to 30% and experiments were performed to study the effects of these variations on combustion behavior.
Technical Paper

Study on Knocking Intensity and Autoignitive Propagation Velocity with the Same Methane Number Mixtures of Methane/Ethane and Methane/n-Butane

2023-10-24
2023-01-1803
Although methane number is widely used to predict knocking occurrence and its intensity, it does not determine a fuel composition uniquely, that means, the knocking intensity by the different composition fuel must show difference even if the same methane number fuels are employed. To establish a novel index, the knocking intensity and the autoignitive propagation velocity, as consequence of spontaneous ignition process, are investigated both experimentally and numerically by using the different composition gaseous fuels with same methane number. Methane/ethane/air and methane/n-butane/air mixtures with the same methane number of 70 and the equivalence ratio of 0.5 were employed. They are rapidly compressed and ignited spontaneously by a Rapid Compression Machine. Ignition delay times, autoignitive propagation velocities, and knocking intensity were measured by acquired pressure histories and high-speed imaging.
Technical Paper

The Effect of Methane Addition on the Low-Temperature Oxidation Preparation and the Thermal Ignition Preparation of Dimethyl Ether Under Representative Engine In-Cylinder Thermal Conditions

2023-09-29
2023-32-0150
Dimethyl ether (DME) is a highly reactive diesel substitute that can be used as a pilot fuel to ignite low- reactivity methane (CH4) in heavy-duty engines. To optimize the efficiency and emissions of CH4/DME dual-fuel engines, it is crucial to study the fundamental combustion characteristics of DME mixed with methane. This study focuses on the influence of CH4 addition on the low-temperature oxidation (LTO) preparation stage and the thermal ignition (TI) preparation stage of DME in the two-stage ignition process, as these two stages respectively control the ignition delay of the first and second stages. The comparison is made between pure DME and a 50% CH4 and 50% DME blended fuel, operating under thermodynamic conditions representing the engine in- cylinder environment at 30 atm pressure, 650K temperature, and a stoichiometric equivalence ratio. The results show that the addition of methane hardly affects the control mechanism of the two-stage ignition of DME.
Technical Paper

Study on Influences of Hydrogen addition and Turbulence on Ignition Characteristics of Hydrocarbon Mixtures

2023-09-29
2023-32-0147
This study is performed to experimentally examine the effects of hydrogen addition and turbulence on the ignition and the flame-kernel development characteristics in isotropic and homogeneous turbulence for methane or propane mixtures. First, in order to investigate the ignition and flame-kernel development in quiescence, the minimum ignition energy MIE and the relationship between the flame radius and the burning velocity of meso-scale laminar flames are examined by using sequential schlieren photography in a constant volume vessel. Then, the properties of MIE are examined for three turbulence level. Additionally, the transition region of MIE could be summarized by using the proposed turbulent Karlovitz number based on the burning velocity of the meso-scale flame in quiescence.
Technical Paper

Fuel Stratification to Improve the Lean Limit in a Methane-Fueled Heavy-Duty Spark-Ignition Optical Engine

2023-08-28
2023-24-0045
Natural gas is an attractive fuel for heavy-duty internal combustion engines as it has the potential to reduce CO2, particulate, and NOx emissions. This study reports optical investigations on the effect of methane stratification at lean combustion conditions in a heavy-duty optical diesel engine converted to spark-ignition operation. The combination of the direct injector (DI) and port-fuel injectors (PFI) fueling allows different levels of in-cylinder fuel stratification. The engine was operated in skip-firing mode, and high-speed natural combustion luminosity color images were recorded using a high-speed color camera from the bottom view, along with in-cylinder pressure measurements. The results from methane combustion based on port-fuel injections indicate the lean burn limit at λ = 1.4. To improve the lean limit of methane combustion, fuel stratification is introduced into the mixture using direct injections.
Technical Paper

CFD Analysis of Different Biogas Upgrading Levels for Dual-Fuel Operation in Diesel Engines

2023-08-28
2023-24-0055
As the transportation sector continues to increase its energy demand and present stricter environmental regulations, the use of biofuels has been gaining more attention. Among them, one of the most promising options is biomethane - a methane-rich fuel produced from biogas upgrading. Despite presenting excellent combustion properties and composition comparable to natural gas, this green fuel requires a proper biogas processing technology that may lead to a high final cost. On the other hand, the direct use of unprocessed biogas may cause operational issues in the engine, since it may present corrosive contaminants and a high CO2 concentration that affects the combustion and decrease storage efficiency. Therefore, a balance between upgrading level and good engine operation could lead a reliable engine performance without the need of high processing costs.
Technical Paper

Effects of Engine Speed on Prechamber-Assisted Combustion

2023-08-28
2023-24-0020
Lean combustion technologies show promise for improving engine efficiency and reducing emissions. Among these technologies, prechamber-assisted combustion (PCC) is established as a reliable option for achieving lean or ultra-lean combustion. In this study, the effect of engine speed on PCC was investigated in a naturally aspirated heavy-duty optical engine: a comparison has been made between analytical performances and optical flame behavior. Bottom view natural flame luminosity (NFL) imaging was used to observe the combustion process. The prechamber was fueled with methane, while the main chamber was fueled with methanol. The engine speed was varied at 1000, 1100, and 1200 revolutions per minute (rpm). The combustion in the prechamber is not affected by changes in engine speed. However, the heat release rate (HRR) in the main chamber changed from two distinct stages with a faster first stage to more gradual and merged stages as the engine speed increased.
Technical Paper

Performance and Emission Characteristics of Direct Injection DME Combustion under Low NOx Emissions

2023-04-11
2023-01-0327
Compression ignition internal combustion engines provide unmatched power density levels, making them suitable for numerous applications including heavy-duty freight trucks, marine shipping, and off-road construction vehicles. Fossil-derived diesel fuel has dominated the energy source for CI engines over the last century. To mitigate the dependency on fossil fuels and lessen anthropogenic carbon released into the atmosphere within the transportation sector, it is critical to establish a fuel source which is produced from renewable energy sources, all the while matching the high-power density demands of various applications. Dimethyl ether (DME) has been used in non-combustion applications for several decades and is an attractive fuel for CI engines because of its high reactivity, superior volatility to diesel, and low soot tendency. A range of feedstock sources can produce DME via the catalysis of syngas.
Technical Paper

Investigation of Premixed Fuel Composition and Pilot Reactivity Impact on Diesel Pilot Ignition in a Single-Cylinder Compression Ignition Engine

2023-04-11
2023-01-0282
This work experimentally investigates the impact of premixed fuel composition (methane/ethane, methane/propane, and methane/hydrogen mixtures having equivalent chemical energy) and pilot reactivity (cetane number) on diesel-pilot injection (DPI) combustion performance and emissions, with an emphasis on the pilot ignition delay (ID). To support the experimental pilot ignition delay trends, an analysis technique known as Mixing Line Concept (MLC) was adopted, where the cold diesel surrogate and hot premixed charge are envisioned to mix in a 0-D constant volume reactor to account for DPI mixture stratification. The results show that the dominant effect on pilot ignition is the pilot fuel cetane number, and that the premixed fuel composition plays a minor role. There is some indication of a physical effect on ignition for cases containing premixed hydrogen.
Technical Paper

Analysis of Combustion Cycle-to-Cycle Variation in an Optical Single Cylinder Dual-Fuel Engine

2023-04-11
2023-01-0279
This study aims to improve the dual fuel combustion for low/zero carbon fuels. Seven cases were tested in a single cylinder optical engine and their ignition and combustion characteristics are compared. The baseline case is the conventional diesel combustion. Four cases are diesel-gas (compressed natural gas) dual-fuel combustion operations, and two cases are diesel-hythane combustion. The diesel fuel injection process was visualized by a high-speed copper vapour laser. The combustion processes were recorded with a high-speed camera at 10000 Hz with an engine speed of 1200 rpm. The high-speed recordings for each case included 22 engine cycles and were postprocessed to create one spatial overlapped average combustion image. The average combustion cycle images were then further thresholded and these images were then used in a new method to analyze the cycle-to-cycle variation in a dimensionless, for all cases comparable value.
Technical Paper

Enhanced Combustion by Photo Ignition of Carbon Nanotubes in a Constant Volume Chamber

2023-04-11
2023-01-0406
Using ammonia as fuel in retrofitted large marine vessels or heavy-duty vehicles has the potential to reduce CO2 emissions. However, ammonia is hard to burn in an internal combustion engine (ICE) due to its poor combustion properties, i.e. having high autoignition temperatures and low flame speeds. This results in the need for a highly reactive secondary fuel or an improved ignition system for achieving complete and stable combustion. This study investigates a radical technology for the ignition of a fuel-air mixture using carbon nanotubes. The technology consists of injecting a mixture of multi-walled carbon nanotubes and ferrocene (CNT-Fe) into a fuel-air mixture and subjecting the particles to a bright flash of light. Due to the photochemical properties of CNT-Fe particles, the absorbed light initiates ignition.
Technical Paper

Active Plasma Probing for Lean Burn Flame Detection

2023-04-11
2023-01-0293
Combustion diagnostics of highly diluted mixtures are essential for the estimation of the combustion quality, and control of combustion timing in advanced combustion systems. In this paper, a novel fast response flame detection technique based on active plasma is introduced and investigated. Different from the conventional ion current sensing used in internal combustion engines, a separate electrode gap is used in the detecting probing. Further, the detecting voltage across the electrode gap is modulated actively using a multi-coil system to be slightly below the breakdown threshold before flame arrival. Once the flame front arrives at the probe, the ions on the flame front tend to decrease the breakdown voltage threshold and trigger a breakdown event. Simultaneous electrical and optical measurements are employed to investigate the flame detecting efficacy via active plasma probing under both quiescent and flow conditions.
Technical Paper

Experimental and Modeling Study on the Thermal Aging Impact on the Performance of the Natural Gas Three-Way Catalyst

2023-04-11
2023-01-0375
The prediction accuracy of a three-way catalyst (TWC) model is highly associated with the ability of the model to incorporate the reaction kinetics of the emission process as a lambda function. In this study, we investigated the O2 and H2 concentration profiles of TWC reactions and used them as critical inputs for the development of a global TWC model. We presented the experimental data and global kinetic model showing the impact of thermal degradation on the performance of the TWC. The performance metrics investigated in this study included CH4, NOx, and CO conversions under lean, rich, and dithering light-off conditions to determine the kinetics of oxidation reactions and reduction/reforming/water-gas shift reactions as a function of thermal aging. The O2 and H2 concentrations were measured using mass spectrometry to track the change in the oxidation state of the catalyst and to determine the mechanism of the reactions under these light-off conditions.
Technical Paper

Operation of a Natural Gas Direct Injection Compression Ignition Single Cylinder Research Engine

2023-04-11
2023-01-0260
The medium and heavy-duty powertrain industry trend is to reduce reliance on diesel fuel and is aligned with continued efforts of achieving ultra-low emissions and high brake efficiencies. Compression Ignition (CI) of late cycle Directly Injected (DI) Natural Gas (NG) shows the potential to match diesel performance in terms of brake efficiency and power density, with the benefit of utilizing a lower carbon content fuel. A primary challenge is to achieve stable ignition of directly injected NG over a wide engine speed and load range without the need for a separate ignition source. This project aims to demonstrate the CI of DI NG through experimental studies with a Single Cylinder Research Engine (SCRE), leading to the development of a mono-fueled NG engine with equivalent performance to that of current diesel technology, 25% lower CO2 emissions, and low engine out methane emissions.
Technical Paper

AI Super-Resolution-Based Subfilter Modeling for Finite-Rate-Chemistry Flows: A Jet Flow Case Study

2023-04-11
2023-01-0200
Large-eddy simulation (LES) can be a very important tool to support and accelerate the energy transition to green technologies and thus play a significant role in the fight against climate change. However, especially LES of reactive flows is still challenging, e.g., with respect to emission prediction, and perfect subfilter models do not yet exist. Recently, new subfilter models based on physics-informed generative adversarial networks (GANs), called physics-informed enhanced super-resolution GANs (PIESRGANs), have been developed and successfully applied to a wide range of flows, including decaying turbulence, sprays, and finite-rate-chemistry flows. This technique, based on AI super-resolution, allows for the systematic derivation of accurate subfilter models from direct numerical simulation (DNS) data, which is critical, e.g., for the development of efficient energy devices based on advanced fuels.
X