Refine Your Search

Topic

Author

Search Results

Technical Paper

Regression Techniques for Parameter Estimation of a Synchronous Machine from Sudden Short-Circuit Testing

2019-03-19
2019-01-1354
A sudden short-circuit (SSC) laboratory test of an electric machine is a commonly used procedure to estimate model parameters that accurately represent the dynamic response of the machine. While the graphical interpretation of the short-circuit current is often discussed in great detail, the numerical methods used to determine the solution for the machine parameter estimation is a challenging proposition. In this paper, the authors present an integral regression technique to fit the characteristic equation of the short-circuit current to a curve that is composed of exponential decays that trail off to an unknown steady-state value in the presence of noise. The proposed estimation method is applied to laboratory data from an aerospace synchronous machine.
Technical Paper

Investigation of the Effects on the Engine Drive Shaft to Increased Electrical Power in Aircraft Applications

2017-09-19
2017-01-2033
The amount of electrical power required for future aircraft is increasing significantly. In this paper, a comprehensive model of a drive shaft with multiple degrees of freedom was developed and integrated to detailed engine and electrical network models to study the impact of higher electrical loads. The overall system model is composed of the engine, shafts, gearbox, and the electric network. The Dynamic Dual Spool High Bypass JT9D engine was chosen for this study. The engine was modeled using NASA’s T-MATS (Toolbox for the Modeling and Analysis of Thermodynamic Systems) software. In the electrical side, one generator was connected to the Low Pressure (LP) shaft and the other to the High Pressure (HP) shaft. A modified model of the shafts between the engine and the accessory gearbox was created.
Journal Article

A First Principles Based Approach for Dynamic Modeling of Turbomachinery

2016-09-20
2016-01-1995
As the cost and complexity of modern aircraft systems increases, emphasis has been placed on model-based design as a means for reducing development cost and optimizing performance. To facilitate this, an appropriate modeling environment is required that allows developers to rapidly explore a wider design space than can cost effectively be considered through hardware construction and testing. This wide design space can then yield solutions that are far more energy efficient than previous generation designs. In addition, non-intuitive cross-coupled subsystem behavior can also be explored to ensure integrated system stability prior to hardware fabrication and testing. In recent years, optimization of control strategies between coupled subsystems has necessitated the understanding of the integrated system dynamics.
Journal Article

Hybrid Technique for Real-Time Simulation of High-Frequency-Switched Electrical Systems

2016-09-20
2016-01-2028
Experimental Hardware-in-the-loop (xHIL) testing utilizing signal and/or power emulation imposes a hard real-time requirement on models of emulated subsystems, directly limiting their fidelity to what can be achieved in real-time on the available computational resources. Most real-time simulators are CPU-based, for which the overhead of an instruction-set architecture imposes a lower limit on the simulation step size, resulting in limited model bandwidth. For power-electronic systems with high-frequency switching, this limit often necessitates using average-value models, significantly reducing fidelity, in order to meet the real-time requirement. An alternative approach emerging recently is to use FPGAs as the computational platform, which, although offering orders-of-magnitudes faster execution due to their parallel architecture, they are more difficult to program and their limited fabric space bounds the size of models that can be simulated.
Journal Article

Utilizing Behavioral Models in Experimental Hardware-in-the-Loop

2016-09-20
2016-01-2042
This paper introduces a method for conducting experimental hardware-in-the-loop (xHIL), in which behavioral-level models are coupled with an advanced power emulator (APE) to emulate an electrical load on a power generation system. The emulator is commanded by behavioral-level models running on an advanced real-time simulator that has the capability to leverage Central Processing Units (CPUs) and field programmable gate arrays (FPGA) to meet strict real-time execution requirements. The paper will be broken down into four topics: 1) the development of a solution to target behavioral-level models to an advanced, real-time simulation device, 2) the development of a high-bandwidth, high-power emulation capability, 3) the integration of the real-time simulation device and the APE, and 4) the application of the emulation system (simulator and emulator) in an xHIL experiment.
Journal Article

Power Quality Assessment through Stochastic Equivalent Circuit Analysis

2016-09-20
2016-01-1988
Movement toward more-electric architectures in military and commercial airborne systems has led to electrical power systems (EPSs) with complex power flow dynamics and advanced technologies specifically designed to improve power quality in the system. As such, there is a need for tools that can quickly analyze the impact of technology insertion on the system-level dynamic transient and spectral power quality and assess tradeoffs between impact on power quality versus weight and volume. Traditionally, this type of system level analysis is performed through computationally intensive time-domain simulations involving high fidelity models or left until the hardware fabrication and integration stage. In order to provide a more rapid analysis prior to hardware development and integration, stochastic equivalent circuit analysis is developed that can provide power quality assessment directly in the frequency domain.
Journal Article

The Utility of Wide-Bandwidth Emulation to Evaluate Aircraft Power System Performance

2016-09-20
2016-01-1982
The cost and complexity of aircraft power systems limit the number of integrated system evaluations that can be performed in hardware. As a result, evaluations are often performed using emulators to mimic components or subsystems. As an example, aircraft generation systems are often tested using an emulator that consists of a bank of resistors that are switched to represent the power draw of one or more actuators. In this research, consideration is given to modern wide bandwidth emulators (WBEs) that use power electronics and digital controls to obtain wide bandwidth control of power, current, or voltage. Specifically, this paper first looks at how well a WBE can emulate the impedance of a load when coupled to a real-time model. Capturing the impedance of loads and sources is important for accurately assessing the small-signal stability of a system.
Technical Paper

Development and Performance of a Reduced Order Dynamic Aircraft Model

2015-09-15
2015-01-2415
A reduced order dynamic aircraft model has been created for the purpose of enabling constructive simulation studies involving integrated thermal management subsystems. Such studies are motivated by the increasing impact of on-board power and thermal subsystems to the overall performance and mission effectiveness of modern aircraft. Previous higher-order models that have been used for this purpose have the drawbacks of much higher development time, along with much higher execution times in the simulation studies. The new formulation allows for climbs, accelerations and turns without incurring computationally expensive stability considerations; a dynamic inversion control law provides tracking of user-specified mission data. To assess the trade-off of improved run-time performance against model capability, the reduced order formulation is compared to a traditional six degree-of-freedom model of the same air vehicle.
Technical Paper

Model Validation Planning and Process on the INVENT Program

2014-09-16
2014-01-2116
Validation is a critical component of model-based design (MBD). Without it, regardless of the level of model verification, neither the accuracy nor the domain of applicability of the models is known. Thus, it is risky to base design decisions on the predictions of unvalidated models. The Integrated Vehicle Energy Technology (INVENT) program is planning a series of hardware experiments that will be used to validate a large set of unit-, subsystem-, and system-level models. Although validating such a large number of interacting models is a large task, it provides an excellent opportunity to test the limits of MBD.
Technical Paper

Cycle-Based Vapor Cycle System Control and Active Charge Management for Dynamic Airborne Applications

2014-09-16
2014-01-2224
Numerous previous studies have highlighted the potential efficiency improvements which can be provided to aircraft thermal management systems by the incorporation of vapor cycle systems (VCS), either in place of, or in conjunction with, standard air cycle systems, for providing the needed thermal management for aircraft equipment and crews. This paper summarizes the results of a cycle-based VCS control architecture as tested using the Vapor Cycle System Research Facility (VCSRF) in the Aerospace Systems Directorate of the Air Force Research Laboratory at Wright-Patterson Air Force Base. VCSRF is a flexible, dynamic, multi-evaporator VCS which incorporates electronic expansion valves and a variable speed compressor allowing the flexibility to test both components and control schemes. The goal of this facility is to reduce the risk of incorporating VCS into the thermal management systems (TMS) of future advanced aircraft.
Technical Paper

Model Accuracy of Variable Fidelity Vapor Cycle System Simulations

2014-09-16
2014-01-2140
As the cost and complexity of modern aircraft systems advance, emphasis has been placed on model-based design as a means for cost effective subsystem optimization. The success of the model-based design process is contingent on accurate prediction of the system response prior to hardware fabrication, but the level of fidelity necessary to achieve this objective is often called into question. Identifying the key benefits and limitations of model fidelity along with the key parameters that drive model accuracy will help improve the model-based design process enabling low cost, optimized solutions for current and future programs. In this effort, the accuracy and capability of a vapor cycle system (VCS) model were considered from a model fidelity and parameter accuracy standpoint. A range of model fidelity was evaluated in terms of accuracy, capability, simulation speed, and development time.
Technical Paper

Enhancements to Software Tools and Progress in Model-Based Design of EOA on the INVENT Program

2014-09-16
2014-01-2118
The diverse and complex requirements of next-generation energy optimized aircraft (EOA) demand detailed transient and dynamic model-based design (MBD) to ensure the proper operation of numerous interconnected and interacting subsystems across multiple disciplines. In support of the U.S. Air Force's Integrated Vehicle Energy Technology (INVENT) program, several MBD-derived software tools, including models of EOA technologies, have been developed. To validate these models and demonstrate the performance of EOA technologies, a series of Integrated Ground Demonstration (IGD) hardware tests are planned. Several of the numerous EOA software tools and MBD-based processes have been updated and adapted to support this activity.
Technical Paper

Refrigerant Charge Management and Control for Next-Generation Aircraft Vapor Compression Systems

2013-09-17
2013-01-2241
Vapor compression systems (VCS) offer significant benefits as the backbone for next generation aircraft thermal management systems (TMS). For a comparable lift, VCS offer higher system efficiencies, improved load temperature control, and lower transport losses than conventional air cycle systems. However, broad proliferation of VCS for many aircraft applications has been limited primarily due to maintenance and reliability concerns. In an attempt to address these and other VCS system control issues, the Air Force Research Laboratory has established a Vapor Cycle System Research Facility (VCSRF) to explore the practical application of dynamic VCS control methods for next-generation, military aircraft TMS. The total refrigerant mass contained within the closed refrigeration system (refrigerant charge) is a critical parameter to VCS operational readiness. Too much or too little refrigerant can be detrimental to system performance.
Technical Paper

Developing IVHM Requirements for Aerospace Systems

2013-09-17
2013-01-2333
The term Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable sustainable and safe operation of components and subsystems within aerospace platforms. However, very little guidance exists for the systems engineering aspects of design with IVHM in mind. It is probably because of this that designers have to use knowledge picked up exclusively by experience rather than by established process. This motivated a group of leading IVHM practitioners within the aerospace industry under the aegis of SAE's HM-1 technical committee to author a document that hopes to give working engineers and program managers clear guidance on all the elements of IVHM that they need to consider before designing a system. This proposed recommended practice (ARP6883 [1]) will describe all the steps of requirements generation and management as it applies to IVHM systems, and demonstrate these with a “real-world” example related to designing a landing gear system.
Journal Article

Software Tools for Efficient Model-Based Design of Energy Optimized Aircraft

2012-10-22
2012-01-2176
The diverse and complex requirements of next-generation energy optimized aircraft (EOA) demand detailed transient and dynamic model-based design (MBD) to ensure the proper operation of numerous interconnected and interacting subsystems. In support of the U.S. Air Force's Integrated Vehicle Energy Technology (INVENT) program, several software tools have been developed and are in use that aid in the efficient MBD of next-generation EOA. Among these are subsystem model libraries, automated subsystem model verification test scripts, a distributed co-simulation application, and tools for system configuration, EOA mission building, data logging, plotting, post-processing, and visualization, and energy flow analysis. Herein, each of these tools is described. A detailed discussion of each tool's functionality and its benefits with respect to the goal of achieving successful integrated system simulations in support of MBD of EOA is given.
Technical Paper

Impact of Heat Exchanger Location on Engine Performance

2012-10-22
2012-01-2168
Recent turbine engine numerical modeling developments have significantly improved the capability to accomplish integrated system-level analyses of aircraft thermal, power, propulsion, and vehicle systems. Combining desired aircraft performance with thermal management challenges of modern aircraft, which include increased heat loads from components such as avionics and more-electric accessories, as well as maintaining engine components at specified operating temperatures, demands we look for solutions that maximize heat sink capacity while minimizing adverse impacts on engine and aircraft performance. Development of optimized aircraft thermal management architectures requires the capability to directly analyze the impact of thermal management components, such as heat exchangers, on engine performance. This paper presents a process to evaluate the impact of heat exchanger design and performance characteristics (e.g., volume and pressure drops) on engine performance.
Technical Paper

Test Set-up for Electromechanical Actuation Systems for Aircraft Flight Control

2012-10-22
2012-01-2203
An Electromechanical Actuation System (EMAS) are an important component for an all electric Aircraft. EMAS would be lighter and require less system maintenance and operational costs than hydraulic actuators, typically used in aircraft systems. Also, hydraulic actuation systems require a constant power load to maintain hydraulic pressure, whereas EMAS only use power when actuation is needed. The technical challenges facing EMAS for aircraft primary flight control includes jam tolerance, thermal management, wide temperature range, high peak electric power draw, regenerative power, installation volume limit for thin wings, etc. This paper focuses on a laboratory test setup to simulate EMAS flight control environment to test and evaluate three important performance parameters of EMAS; thermal management, transient peak power draw, and regenerative power.
Technical Paper

In-situ Charge Determination for Vapor Cycle Systems in Aircraft

2012-10-22
2012-01-2187
The Air Force Research Laboratory (AFRL), in cooperation with the University of Dayton Research Institute (UDRI) and Fairchild Controls Corporation, is operating an in-house advanced vapor compression refrigeration cycle system (VCS) test rig known as ToTEMS (Two-Phase Thermal Energy Management System). This test rig is dedicated to the study and development of VCS control and operation in support of the Energy Optimized Aircraft (EOA) initiative and the Integrated Vehicle ENergy Technology (INVENT) program. Previous papers on ToTEMS have discussed the hardware setup and some of the preliminary data collected from the system, as well as the first steps towards developing an optimum-seeking control scheme. A key goal of the ToTEMS program is to reduce the risk associated with operating VCS in the dynamic aircraft environment.
Technical Paper

Large Displacement Stability by Design for Robust Aircraft Electric Power Systems

2012-10-22
2012-01-2197
More electric aircraft (MEA) architectures have increased in complexity leading to a demand for evaluating the dynamic stability of their advanced electrical power systems (EPS). The system interactions found therein are amplified due to the increasingly integrated subsystems and on-demand power requirements of the EPS. Specifically, dynamic electrical loads with high peak-to-average power ratings as well as regenerative power capabilities have created a major challenge in design, control, and integration of the EPS and its components. Therefore, there exists a need to develop a theoretical framework that is feasible and useful for the specification and analysis of the stability of complex, multi-source, multi-load, reconfigurable EPS applicable to modern architectures. This paper will review linear and nonlinear system stability analysis approaches applicable to a scalable representative EPS architecture with a focus on system stability evaluation during large-displacement events.
Technical Paper

Two Phase Thermal Energy Management System

2011-10-18
2011-01-2584
The Air Force Research Laboratory (AFRL), in cooperation with the University of Dayton Research Institute (UDRI) and Fairchild Controls Corporation, is building a test facility to study the use of advanced vapor cycle systems (VCS) in an expanded role in aircraft thermal management systems (TMS). It is dedicated to the study and development of VCS control and operation in support of the Integrated Vehicle ENergy Technology (INVENT) initiative. The Two Phase Thermal Energy Management System (ToTEMS1) architecture has been shown through studies to offer potential weight, cost, volume and performance advantages over traditional thermal management approaches based on Air Cycle Systems (ACS). The ToTEMS rig will be used to develop and demonstrate a control system that manages the system capacity over both large amplitude and fast transient changes in the system loads.
X