Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Design and Sizing Methodology of Electric Vehicle Powertrain to Achieve Optimal Range and Performance

2024-04-09
2024-01-2160
Battery electric vehicles are quickly gaining momentum to improve vehicle fuel efficiency and emission reduction. However, they must be designed to provide adequate range on a single charge combined with good acceleration performance, top speed, gradeability, and fast charging times. The paper presents a model for sizing the power train of an electric vehicle, including the power electronic converter, electric motor, and battery pack. A major assumption is that an optimal wheel slip rate can be achieved by modern vehicles using slip control systems. MATLAB/Simulink was used to model the vehicle powertrain. Simulations were conducted based on different speed and acceleration profiles. The purpose of the study focused on the motor and power electronics sizing requirements to achieve optimal range and performance.
Technical Paper

Sea-Level Characterization of Electrically Assisted Turbocharger for Use on Aviation Diesel Engine

2024-03-05
2024-01-1914
Airborne compression-ignition engine operations differ significantly from those in ground vehicles, both in mission requirements and in operating conditions. Unique challenges exist in the aviation space, and electrification technologies originally developed for ground applications may be leveraged to address these considerations. One such technology, electrically assisted turbochargers (EATs), have the potential to address the following: increase the maximum system power output, directly control intake manifold air pressure, and reignite the engine at altitude conditions in the event of an engine flame-out. Sea-level experiments were carried out on a two-liter, four-cylinder compression-ignition engine with a commercial-off-the-shelf EAT that replaced the original turbocharger. The objective of these experiments was to demonstrate the technology, assess the performance, and evaluate control methods at sea level prior to altitude experimentation.
Technical Paper

Comparative Analysis and Testing the Performance of Various Fuels in Ramjet

2024-02-23
2023-01-5177
The development of ramjet engines has experienced a significant increase in response to the growing demand for supersonic speed capabilities in contemporary propulsion systems and missile weaponry. Their efficient operation at supersonic speeds has garnered increased attention. The study focuses on designing a diffuser and ram cone for decelerating supersonic flow in the combustion chamber. Performance tests for hydrogen and ethanol fuels are conducted at Mach values of 3.5, 3, and 2.5. Injectors are positioned asymmetrically in parallel, perpendicular, and at a 45-degree angle to the flow. Effects of injector orifice diameters (0.8mm, 1mm, 1.2mm) on atomization and penetration length distribution are investigated. SolidWorks is used for design, and Ansys with a coupled implicit second-order upwind solver analyzes the Reynolds-averaged Navier-Stokes equation. Eddy dissipation handles combustion. Hydrogen and ethanol are modeled and injected, reacting with atmospheric oxygen.
Technical Paper

A Methodology of Optimizing Steering Geometry for Minimizing Steering Errors

2024-01-16
2024-26-0062
The focus on driver and occupant safety as well as comfort is increasing rapidly while designing commercial vehicles in India. Improvements in the road network have enhanced road transport for commercial vehicles. Apart from the cost of operation and fuel economy, the commercial vehicles must deliver goods within stipulated time. These factors resulted in higher speed of operation for commercial vehicles. The design should not compromise the safety of the vehicle at these higher speeds of operation. The vehicle should obey the driver’s intended direction at all speeds and the response of the vehicle to driver input must be predictable without much larger surprises which can lead to accidents. The commercial vehicles are designed with rigid axle and RCB type steering system. This suspension and steering design combination introduce steering errors when vehicle travel over bump, braked and while cornering.
Technical Paper

Oil Aerosol Emission Optimization Using Deflectors in Turbo Charger Oil Drain Circuit

2024-01-16
2024-26-0047
Closed crankcase ventilation prevent harmful gases from entering atmosphere thereby reducing hydrocarbon emissions. Ventilation system usually carries blowby gases along with oil mist generated from Engine to Air intake system. Major sources of blowby occurs from leak in combustion chamber through piston rings, leakage from turbocharger shafts & leakage from valve guides. Oil mist carried by these blowby gases gets separated using separation media before passing to Air Intake. Fleece separation media has high separation efficiency with lower pressure loss for oil aerosol particles having size above 10 microns. However, efficiency of fleece media drops drastically if size of aerosol particles are below 10 microns. Aerosol mist of lower particle size (>10 microns) generally forms due to flash boiling on piston under crown area and from shafts of turbo charger due to high speeds combined with elevated temperatures. High power density diesel engine is taken for our study.
Technical Paper

Motorcycle Engine Vibrations Prediction for Inertia Loads Using Multi Body Dynamics Calculations

2024-01-16
2024-26-0232
Motorcycles are a preferred means of transportation in most of the countries due to its economic factor and ease in travelling. Rider comfort is an important aspect while designing a vehicle. Rider comfort is often compromised by unwanted vibrations experienced at human interface points also called as tactile points. These unwanted vibrations also affect rider’s motorcycle control and overall health. There are two major source of vibrations in a motorcycle that is engine & road inputs. In current study, a method is being explored to predict engine induced vibrations. Engine induced vibrations at various locations are simulated through multi body dynamics (MBD) and finite element (FE) simulation methods at vehicle level. Motorcycle model comprising of engine, frame and subassemblies are modeled in FE tool and then condensed to be used in MBD tool. Piston assembly, connecting rod, bearings and engine mounts are modeled in MBD tool.
Technical Paper

In-Cylinder Flow Characterization of a Hydrogen-Ammonia Fueled Rotary Engine

2023-12-31
2023-01-7073
At present, the problem of global warming is becoming more and more serious, and the transformation of energy structure is very important. The rotary engine has the advantages of small size, high power-to-weight ratio, and high fuel adaptability, which makes it promising for application in the fields of new energy vehicle range extender and unmanned aerial vehicle.
Technical Paper

Emissions of Aerospace Fuels F-24 and Jet-A in a Jet Engine and Correlation with Combustion Characteristics from a Constant Volume Combustion Chamber

2023-10-31
2023-01-1666
An investigation into emissions differences and their correlations with differing combustion characteristics between F24 and Jet-A was conducted. Raw emissions data was taken from a single stage jet engine by a FTIR gas analyzer. Measurements of H2O, CO2, CO, NOx, and total hydrocarbon emissions (THC) were taken at 60K, 65K, and 70K RPM. At 70K RPM Jet-A and F-24 the emissions were similar at approx.: 4% H2O, 3% CO2, 970 PPM CO, 28 PPM NOx. Jet-A THC emissions were approx.: 1200 PPM THC, F24 THC emissions were lower by over 60%. The significantly lower amount of THC emissions for F24 suggests more complete combustion compared to Jet-A.
Technical Paper

Modeling of piston pin rotation in a large bore gas engine

2023-09-29
2023-32-0161
In an engine system, the piston pin is subjected to high loading and severe lubrication conditions, and pin seizures still occur during new engine development. A better understanding of the lubricating oil behavior and the dynamics of the piston pin could lead to cost- effective solutions to mitigate these problems. However, research in this area is still limited due to the complexity of the lubrication and the pin dynamics. In this work, a numerical model that considers structure deformation and oil cavitation was developed to investigate the lubrication and dynamics of the piston pin. The model combines multi-body dynamics and elasto-hydrodynamic lubrication. A routine was established for generating and processing compliance matrices and further optimized to reduce computation time and improve the convergence of the equations. A simple built-in wear model was used to modify the pin bore and small end profiles based on the asperity contact pressures.
Technical Paper

3D Immersed Boundary Methods for the Calculations of Droplet Trajectories towards Icing Application

2023-06-15
2023-01-1458
The in-flight ice accretion simulations are typically performed using a quasi-steady formulation through a multi-step approach. As the ice grows, the geometry changes, and an adaptation of the fluid volume mesh used by the airflow and droplet-trajectory solver is required. Re-meshing or mesh deformation are generally employed to do that. The geometries formed are often complex ice shapes increasing the difficulty of the re-meshing process, especially in three-dimensional simulations. Consequently, difficulties are encountered when trying to automate the process. Contrary to the usual body-fitted mesh approach, the use of immersed boundary methods (IBMs) allows solving, or greatly reducing, this problem by removing the mesh update, facilitating the global automation of the simulation. In the following paper, an approach to perform the airflow and droplet trajectory calculations for three-dimensional simulations is presented. This framework utilizes only immersed boundary methods.
Technical Paper

Liquid Water Content Instrumentation Study at the NRC AIWT

2023-06-15
2023-01-1424
The National Research Council Altitude Icing Wind Tunnel liquid water content calibrations have historically relied on a 2.4 mm diameter rotating cylinder for drop sizes up to 50 μm and a 6.2 mm diameter rotating cylinder for drop sizes from 50 μm to 200 μm. This study compares the facility calibration, derived from rotating cylinder measurements, to water content measurements from the Science Engineering Associates Multi-Element Probe and the National Research Council Compact Iso-Kinetic Probe over a range of airspeeds and drop sizes. The data show where the rotating cylinder measurements may start to underestimate the liquid water content (LWC), possibly due to splashing at higher airspeeds and drop sizes. The data also show that the LWC read by the Multi-Element Probe is higher than that provided by the rotating cylinders, and the Compact Iso-Kinetic Probe (CIKP) reads higher than both other methods.
Technical Paper

Introduction of an Online Ice Accretion Database

2023-06-15
2023-01-1464
In the course of the Horizon 2020 project ICE GENESIS of the European Union, an experimental database was developed to host documentation of icing experiments. The database serves as a source of information for numerical code development and validation as well as future test matrix design, IPS layout and development and wing design. Several legacy data icing cases have been included into the database, which are partly publicly available. Furthermore, the database will serve as the main platform for dissemination of public results of icing cases after and during the project ICE GENESIS. The database itself provides detailed information about the test configurations and the icing wind tunnel. More specifically, CAD data, ice protection system characteristics if applicable, installation in the test facility, instrumentation, test matrix, generated aero-icing conditions and test results are included.
Technical Paper

Model Selection for Predicting the Evaporation Rate of Aviation Fuels

2023-05-18
2023-01-5028
The prediction of accurate evaporation rates for aviation fuels, which are complex mixtures of hundreds of hydrocarbon components with varying evaporation characteristics, remains a challenge. Multi-component vaporization models, such as distillation curve (DC) and diffusion limit (DL), are capable of predicting evaporation rates well but require the construction of surrogate fuels, which is difficult. Mono-component models, on the other hand, can be used for rapid evaporation conditions similar to those in a heat engine combustion chamber, with acceptable uncertainties. However, the accuracy of these models under engine-relevant operating conditions is unclear. This study aims to address this research gap by experimentally measuring the evaporation rates of two aviation fuels (TS-1 and Jet-A1) at different temperature conditions and evaluating the feasibility of current theoretical models for predicting evaporation rates under engine-relevant conditions.
Technical Paper

Combustion Characteristics of Low DCN Synthetic Aviation Fuel, IPK, in a High Compression Ignition Indirect Injection Research Engine

2023-04-11
2023-01-0272
The Coal-To-Liquid (CTL) synthetic aviation fuel, Iso-Paraffinic Kerosene (IPK), was studied for ignition delay, combustion delay, pressure trace, pressure rise rate, apparent heat release rate in an experimental single cylinder indirect injection (IDI) compression ignition engine and a constant volume combustion chamber (CVCC). Autoignition characteristics for neat IPK, neat Ultra-Low Sulfur Diesel (ULSD), and a blend of 50%IPK and 50% ULSD were determined in the CVCC and the effects of the autoignition quality of each fuel were determined also in an IDI engine. ULSD was found to have a Derived Cetane Number (DCN) of 47 for the batch used in this experimentation. IPK was found to have a DCN of 25.9 indicating that is has a lower affinity for autoignition, and the blend fell between the two at 37.5. Additionally, it was found that the ignition delay for IPK in the CVCC was 5.3 ms and ULSD was 3.56 ms.
Technical Paper

Aircraft Aerodynamic Technology Review - A Tool for Aviation Performance and Sustainability Improvement

2023-02-10
2022-36-0022
The aviation industry (passenger and freight), which currently accounts for 2.5% of the global CO2 emissions (1.9% of global greenhouse gas (GHG) emissions), is continuously under pressure to reduce its environmental footprint, given its historical and forecasted environmental track, strongly affected by the remarkable air traffic volume increase rates, albeit with a slower growth in emissions, due to the massive aviation's efficiency improvements, driven by the in the design and technology(more efficient and larger) aircrafts; improved operational practices and increased load factors (more passengers and freight per flight). Nevertheless, it has not been enough to tackle the rapidly increasing CO2 emissions (26% in the 2013-2018 timeframe and expected to continue increasing), which ultimately could grow between 2.4 and 3.6 times by 2050.
Technical Paper

Experimental Testing of Spray Characteristics of Swirler Injector without Guide Vanes in Liquid Propellant Rocket Engines

2022-10-05
2022-28-0393
This paper studies the “Experimental testing of spray characteristics of swirler injector without guide vanes in Liquid Propellant Rocket Engines”. The purpose of a fuel injector is to inject and control the flow of the propellants into the combustion chamber. It consists of Tangential ports, a swirls chamber, a converging spin chamber, and a discharge orifice. Kerosene as fuel and liquid oxygen as oxidizer were employed here. To pressurize the propellants, nitrogen gas is used and the pressurized pipeline is controlled with an open/close ball valve and measure the inlet pressure using a pressure gauge. When a propellant comes through the inlet has a tangential velocity and it causes the propellants to swirl inside the swirl chamber at the exit the propellant comes with rotational momentum and forms a liquid film and then the friction between the propellant and air accelerates and disrupts the liquid film and converts into very tiny droplets.
Technical Paper

Development of a Combustion System for a New Generation of 2-Stroke Spark Ignition Engines

2022-09-16
2022-24-0040
Conventional 2-Stroke Spark Ignition engines are characterized by very high power to weight ratios and low manufacturing costs, but also by very low thermal efficiencies and high pollutant emissions. The last issues can be fully addressed by adopting an external scavenging pump and a direct or semi-direct injection system. The implementation of these solutions requires a strong support from CFD simulations, in particular for the optimization of air-fuel mixing and combustion. The paper presents a theoretical study on a new 2-Stroke, three cylinders, 1.3 L, Spark Ignition engine for light aircraft. The power-unit also includes an electric motor connected in parallel with the thermal engine. The latter features a supercharger and a two-stage injection system, made up of a set of low-pressure fuel injectors installed on the transfer ports, and a high-pressure gasoline injector on the cylinder head.
Technical Paper

Design and Simulation of Isolated AC-DC Fly Back Conversion System for High Energy Ignition Unit of Gas Turbine Engines

2022-05-26
2022-26-0010
A high energy ignition system is used in the gas turbine engine to provide desired heat energy which ignites the fuel and compressed air passing through the combustion chamber. The high energy output of the ignition system depends on the suitable selection of converter mechanism. Therefore, an AC-DC fly back converter mechanism is used in the exciter unit which supplies high input voltage (3000V) to the gas discharge tube. This converter design provides input and output side electrical isolation and assures the safety of the system. Also, by incorporating this circuit with the ignition coil, the desired output of 3-6 joules and spark rate of 200 to 350 micro seconds can be achieved. This paper discusses the procedures involved in estimating the parameters for design of fly back conversion mechanism for HEI unit and simulating the designed circuit using MATLAB/SIMULINK for performance analysis and further optimization.
Technical Paper

Modeling and Dynamic Analysis of a Self-Regulating Valve

2022-05-26
2022-26-0011
Pressure regulating valves are one of the indispensable components in an aircraft. Its application is found in many critical systems such as anti-icing system, cabin pressurization, propulsion system, hydraulic system etc. In this study, the simulation and dynamic analysis of a pressure regulating anti-icing valve is discussed. The valve comprises of an arrangement of sliding piston and pressure chamber to regulate the pressure. It also includes a feedback loop to achieve self-regulation. The valve includes two functional halves for robustness as well as to have some redundant functionality if some components doesn’t function optimally as the operation calls for accuracy as well as precision. The principles behind the working of this valve includes the interaction of physical domains such as mechanical and fluid dynamics. The modeling of this valve is carried out in multi-domain physical state simulation in MATLAB/SIMULINK platform.
Journal Article

The Aerodynamic Development of the New Range Rover Evoque

2022-03-29
2022-01-0890
The Range Rover Evoque is a compact luxury SUV, first introduced by Land Rover in 2012. Almost 800,000 units of the first-generation vehicle were sold. This paper explores some of the challenges entailed in developing the next generation of this successful product, maintaining key design cues while at the same time improving its aerodynamic efficiency. A development approach is outlined that made use of both numerical simulation and full-scale moving ground wind tunnel testing. A drag coefficient of 0.32 was obtained for the best derivative by paying particular attention to: the integration of active grille shutters; the front bumper and tyre package; brake cooling; underfloor design; wake control strategy; and detail optimization. This approach delivered the most aerodynamic Range Rover at the time of its introduction. The impact of these design changes on the aerodynamic flow field and consequently drag is highlighted.
X