Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Selective Laser Melting Based Additive Manufacturing Process Diagnostics using In-line Monitoring Technique and Laser-Material Interaction Model

2024-06-01
2024-26-0420
Selective Laser Melting (SLM) has gained widespread usage in aviation, aerospace, and die manufacturing due to its exceptional capacity for producing intricate metal components of highly complex geometries. Nevertheless, the instability inherent in the SLM process frequently results in irregularities in the quality of the fabricated components. As a result, this hinders the continuous progress and wider acceptance of SLM technology. Addressing these challenges, in-process quality control strategies during SLM operations have emerged as effective remedies for mitigating the quality inconsistencies found in the final components. This study focuses on utilizing optical emission spectroscopy and IR thermography to continuously monitor and analyze the SLM process within the powder bed, with the aim of strengthening process control and minimizing defects.
Technical Paper

Enhancing Mechanical Behavior of As-Built Polyamide 6+Glass Fiber Produced with Fused Filament Fabrication via Varying Infill Pattern

2024-03-15
2024-01-5035
Additive manufacturing is currently being investigated for the production of components aiming for near net shape. The presence of chopped glass fibers with PA6 increases the melt viscosity and also changes the coefficients of thermal expansion and increase the heat resistance. The great dimensional stability obtained with the fusion of the PA6 with the fiber results in an extremely durable material even in adverse environments for many other materials used in 3D printing. PA6 is a material oriented for users who need to make structural parts and exposed to high mechanical stresses. The impact, test tensile, and flexural results for as-built PA6 with various infill patterns, including grid, triangle, trihexagon, and cubic, are tested.
Technical Paper

Gantry Horizontal Slug Riveting System

2024-03-05
2024-01-1924
Previously given Paper 09ATC-0232 delivered at the SAE Aerotech conference in Seattle in 2009 reports on the E6000 machine installing slug rivets with the EMR. Paper 2015-01-2491given at the SAE conference in Seattle in 2015 reports on index head rivets being installed with screw driven squeeze process. This paper reports on the screw driven squeeze process installing unheaded slug rivet which is a more complex process. We also report on improvements to the fixture automation.
Technical Paper

Implementation of Long Assembly Drills for 777X Flap Carriers

2024-03-05
2024-01-1923
Large diameter, tightly toleranced fastener patterns are commonplace in aerospace structures. Satisfactory generation of these holes is often challenging and can be further complicated by difficult or obstructed access. Bespoke tooling and drill jigs are typically used in conjunction with power feed units leading to a manual, inflexible, and expensive manufacturing process. For 777X flap production, Boeing and Electroimpact collaborated to create a novel, automated solution to generate the fastener holes for the main carrier fitting attachment pattern. Existing robotic automation used for skin to substructure assembly was modified to utilize extended length (up to 635mm), bearing-supported drill bar sub-assemblies. These Long Assembly Drills (LADs) had to be easily attached and detached by one operator, interface with the existing spindle(s), supply cutting lubricant, extract swarf on demand, and include a means for automatically locating datum features.
Technical Paper

Prevention of Operational Errors in Semi-Automatic Riveters by Machine Vision Systems Using Deep Learning

2024-03-05
2024-01-1944
This paper reports the development of an operation support system for production equipment using image processing with deep learning. Semi-automatic riveters are used to attach small parts to skin panels, and they involve manual positioning followed by automated drilling and fastening. The operator watches a monitor showing the processing area, and two types of failure may arise because of human error. First, the operator should locate the correct position on the skin panel by looking at markers painted thereon but may mistakenly cause the equipment to drill at an incorrect position. Second, the operator should prevent the equipment from fastening if they see chips around a hole after drilling but may overlook the chips; chips remaining around a drilled hole may cause the fastener to be inserted into the hole and fastened at an angle, which can result in the whole panel having to be scrapped.
Technical Paper

Multiuso Faltbar Wagen: A Multipurpose Foldable Trolley Designed for Efficiency and Ergonomics

2024-02-23
2023-01-5118
Efficient transportation for carrying heavy loads is a common challenge across various applications, from supermarkets to industrial purposes. Conventional trolleys often fall short when loaded with heavy cargo, resulting in increased exertion and diminished productivity. Moreover, these challenges can adversely affect posture and lumbar spine health, especially for elder people and persons with cervical problems. There is a need for more user-friendly, ergonomic, and space-efficient solutions. This project addresses these challenges through an innovative design that encompasses various aspects of trolley functionality, including the study of comfort, wheel selection, and material considerations, drawing from ergonomic research. Multiple methods are employed to optimize the trolley’s dimensions to improve its overall performance. The trolley’s design features a collapsible basket for the transport of smaller-sized items and a base frame for larger goods and luggage.
Technical Paper

Application of Desirability Approach to Determine Optimal Turning Parameters

2024-02-20
2024-01-5022
Aluminum alloys are employed in agricultural equipment, aerospace sectors, medical instruments, machinery, automobiles, etc. due to their physical and mechanical characteristics. The geometrical shape and size of the parts are modified in turning operation by using a single-point cutting tool. A356 aluminum alloy is widely used in various engineering sectors, hence there is a necessity to produce A-356 components with quality. The inappropriate cutting parameters used in turning operation entail high production costs and reduce tool life. Box–Behnken design (BBD) based on response surface methodology (RSM) was used to design the experiments such that the experiment trials were conducted by varying cutting parameters like N-spindle speed (rpm), f-feed rate (mm/rev), and d-depth of cut (mm). The multi-objective responses, such as surface roughness (SR) and metal removal rate (MRR) were analyzed with the desirability method.
Technical Paper

Statistical Process Control and Analysis on the Water Content Measurements in NASA Glenn’s Icing Research Tunnel

2023-06-15
2023-01-1413
The Icing Research Tunnel at NASA Glenn follows the recommended practice for calibration outlined in SAE’s ARP5905. The calibration team has followed the schedule of a full calibration every five years with a check calibration done every six months following. The liquid water content of the IRT has maintained stability within the stated specifications of variation within +/- 10% of the curve fit equation generated from calibration data. Using past measurements and data trends, IRT characterization engineers wanted to develop methods for the ability to know when data were not within variation. Trends can be observed in the liquid water content measurement process by constructing statistical process control charts. This paper describes data processing procedures for the Multi-Element Sensor in the IRT, including collision efficiency corrections, canonical correlation analysis, process for rejection of data, and construction of control charts.
Research Report

Decarbonized Fuel Options for Civil Aviation

2023-06-13
EPR2023012
Drop-in replacement biofuels and electrofuels can provide net-zero CO2 emissions with dramatic reductions in contrail formation. Biofuels must transition to second-generation cellulosic feedstocks while improving land and soil management. Electrofuels, or "e-fuels,” require aggressive cost reduction in hydrogen production, carbon capture, and fuel synthesis. Hydrogen has great potential for energy efficiency, cost reduction, and emissions reduction; however, its low density (even in liquid form) combined with it’s extremely low boiling temperature mean that bulky spherical tanks will consume considerable fuselage volume. Still, emerging direct-kerosene fuel cells may ultimately provide a superior zero-emission, energy-dense solution. Decarbonized Power Options for Civil Aviation discusses the current challenges with these power options and explores the economic incentives and levers vital to decarbonization.
Research Report

Process Control for Defect Mitigation in Laser Powder Bed Fusion Additive Manufacturing

2023-05-15
EPR2023011
Success in metal additive manufacturing (AM) relies on the optimization of a large set of process parameters to achieve materials whose properties and performance meet design and safety requirements. Despite continuous improvements in the process over the years, the quality of AM parts remains a major concern for manufacturers. Today, researchers are starting to move from discrete geometry-dependent build parameters to continuously variable or dynamically changing parameters that are geometry- and scan-path aware. This approach has become known as “feedforward control.” Process Control for Defect Mitigation in Laser Powder Bed Fusion Additive Manufacturing discusses the origins of feedforward control, its early implementations in AM, the current state of the art, and a path forward to its broader adoption. Click here to access the full SAE EDGETM Research Report portfolio.
Technical Paper

Capacity Modelling and Measurement for Smart Elastic Manufacturing Systems

2023-03-07
2023-01-0997
Aerospace manufacturing is improving its productivity and growth by expanding its capacity for production by investing in new tools and more equipment to provide additional capacity and flexibility in the face of widespread supply disruptions and unpredictable demand. However, the cost of such measures can result in increased unit costs. Alternatively, productivity and quality can be improved by utilizing available resources better to reach optimal performance and react to emerging disruptions and changes. Elastic Manufacturing is a new paradigm that aims to change the response behavior of firms to meet sudden market demands based on automated analysis of the utilization of the available resources, and autonomous allocation of capacity to use resources in the most efficient manner. Through digitalization of the shopfloor, streaming data from equipment enables companies to identify areas for improvement and boost the efficiency without large capital expenditure.
Technical Paper

Modernization of Equipment in Aerospace Nondestructive Inspection

2023-03-07
2023-01-1007
Equipment used in aerospace non-destructive inspection presents opportunity for modernization. Many inspection cells in production operate using a widely available control system software that is suitable for most inspection applications with minimal customization. The size and complex geometry of airframe components demand more application-specific system design to ensure the reliability and cycle time required for an aerospace production schedule. Ordinary inspection systems require manual teaching for program generation and lack datum-finding systems required to rerun programs without modification. Integration of offline programming software and machine vision instruments can save inspection technicians hours or shifts per part by eliminating the need for program retraining due to variation in part delivery position. Modernized inspection cells will reduce labor burden on technicians and provide reliable cycle time information to production planners.
Journal Article

Evolution of Mobile Robotic Manufacturing Systems at Spirit AeroSystems

2023-03-07
2023-01-0996
Efforts toward the mechanization of aircraft manufacturing began as a divided focus between devices like power tools that augment human worker capability and purpose-designed, “monument” automation. While both have benefits and limitations, the capability of modern industrial robots has grown to the point of being able to effectively fill the capability gap between them, offering a third option in the mechanization toolbox. Moreover, increasing computer processing power continues to enable more advanced approaches to perception to inform task planning and execution. Higher performance robots supplemented with greater ability to adapt to various conditions and scenarios have also led to the ability to operate reliably and safely outside traditional fixed-installation, caged work cells.
Journal Article

Development of a Robotic System for Automated Drilling and Inspection of Small Aerostructures

2023-03-07
2023-01-1012
Traditional solutions developed for the aerospace industry must overcome challenges posed for automation systems like design, requalification, large manual content, restricted access, and tight tolerances. At the same time, automated systems should avoid the use of dedicated equipment so they can be shared between jigs; moved between floor levels and access either side of the workpiece. This article describes the development of a robotic system for drilling and inspection for small aerostructure manufacturing specifically designed to tackle these requirements. The system comprises three work packages: connection within the digital thread (from concept through to operational metrics including Statistical Process Control), innovative lightweight / low energy drill, and auto tool-change with in-process metrology. The validation tests demonstrating Technology Readiness Level 6 are presented and results are shown and discussed.
Technical Paper

Intuitive Robot Programming and Path Planning Based on Human-Machine Interaction and Sensory Data for Realization of Various Aircraft Application Scenarios

2022-03-08
2022-01-0011
Human-machine interaction (HMI) technologies enable the automation of various manufacturing and assembly applications while maintaining high flexibility. In this context, human-robot collaboration (HRC) capable robots should no longer function as autonomous systems, but much more as assistance systems or as colleagues for workers. In connection with shorter product life cycles, increasing variant diversity and individualization, the challenge arises to set up flexible robot systems, which can be reprogrammed and commissioned with little effort in a short period of time with preservation of the required accuracies [1]. Therefore, intelligent path planning is essential for development of flexible robot systems. In this paper the development of different approaches are presented that allow the worker on the shop floor to rapidly and easily program a robot to implement new motion tasks based on a camera and sensor system without programming knowledge.
Journal Article

Tool Wear Classification in Automated Drilling Operations of Aircraft Structure Components using Artificial Intelligence Methods

2022-03-08
2022-01-0040
Structural components in fuselage barrels are joined with the help of riveting processes. Concerning the key feature of rivet drill hole size and drilling quality, a poorly executed drilling operation can lead to serious riveting defects such as rivet play or fracture due to non-uniform load distribution. Consequently, the drilling process of a rivet hole and its correct execution is of vast importance for the airworthiness of an aircraft. The condition of the drill used, i.e., the current tool wear, has a direct effect on the quality of the hole. Since conventional approaches, such as changing the tool after a predefined number of process cycles, do not reflect real tool wear, premature wear may occur, resulting in defects. Thus, the online-detection of tool wear for necessitated replacement may indicate a promising future direction in quality control.
Journal Article

Accuracy Analysis for a Flow Line Process using a Mobile Holding Fixture for Machining CFRP Components

2022-03-08
2022-01-0041
The aerospace sector is challenged to produce airplanes more efficiently and resiliently in the future. This leads to an increasing demand for improving productivity and flexibility as well as providing solutions for sustainable developments. A bottleneck in production is the machining of large-scale components. Apart from the machining tasks, non-productive operations like fixture adjustment, component handling, referencing and localization are performed within the machining station and can constitute up to 50% of the overall workload. In the UniFix project, Fraunhofer IFAM is participating in the development of a mobile fixture system for large-scale aircraft components, like vertical tail plane and landing flap components of the single aisle aircrafts.
Technical Paper

Enhancement of 6M Methodology as a Design for Assembly Tool for Developing Effective Aerostructures Assembly Process Designs

2021-08-27
2021-01-6001
Aerostructures assembly (ASA) is a vital process in any aircraft production phase that integrates individual detail parts, sub-assemblies, major assemblies, components, and systems into a final deliverable, a completed aircraft structure fit for flight. ASA in an aircraft’s entire product life cycle represents more than half the cost and time that is a significant portion of the total aircraft production cost. ASA depends on highly skilled manual labor work across the global aerospace supply chain for various assembly processes and subprocesses required for assembling detail parts into sub-assemblies and components to achieve the design intent of the load-carrying aerostructure that is airworthy for the complete operational cycle till disposal of an aircraft. The assembly processes can significantly impact quality, safety, and reliability and can affect an aircraft structure’s performance and design intent.
Research Report

Unsettled Technology Areas in Deterministic Assembly Approaches for Industry 4.0

2021-08-20
EPR2021018
Increased production rates and cost reduction are affecting manufacturing in all mobility industry sectors. One enabling methodology that could achieve these goals in the burgeoning “Industry 4.0” environment is the optimized deterministic assembly (DA) approach. It always forms the same final structure and has a strong link to design-for-assembly and design-for-automation. The entire supply chain is considered, with drastic savings at the final assembly line level through recurring costs and lead-time reduction. Unsettled Technology Areas in Deterministic Assembly Approaches for Industry 4.0 examines the evolution of previous assembly principles that lead up to and enable the DA approach, related simulation methodologies, and undefined and unsolved links between these domains. Click here to access the full SAE EDGETM Research Report portfolio.
Technical Paper

Design, Aerodynamic Analysis, and Fabrication of Agricultural Drone

2021-04-06
2021-01-0809
In the present era adding technology and innovations in agriculture will help in increasing crop productivity. The motive to use development in agriculture is not only to increase productivity but also to take care of our farmers and future generations and one such way to achieve it is by using agricultural drones. One of the main sources (around 70%) of income in India is agriculture. The production rate of crops in agriculture is based on various parameters like temperature, humidity, rain, etc. which are natural factors and are not in farmer’s control. The field of agriculture also depends on some other factors like pests, disease, fertilizers, etc. which can be controlled by giving proper treatment to crops. Pesticides may increase the productivity of crops but they also affect human health. The WHO (World Health Organization) estimated one million cases of ill effects when spraying the pesticides in the crop filed manually.
X