Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

AS9145 Requirements for Advanced Product Quality Planning and Production Part Approval

2024-07-08
This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. Production and continual improvement of safe and reliable products is key in the aviation, space, and defense industries. Customer and regulatory requirements must not only be met, but they are typically expected to exceeded requirements. Due to globalization, the supply chain of this industry has been expanded to countries which were not part of it in the past and has complicated the achievement of requirements compliance and customer satisfaction.
Technical Paper

Selective Laser Melting Based Additive Manufacturing Process Diagnostics using In-line Monitoring Technique and Laser-Material Interaction Model

2024-06-01
2024-26-0420
Selective Laser Melting (SLM) has gained widespread usage in aviation, aerospace, and die manufacturing due to its exceptional capacity for producing intricate metal components of highly complex geometries. Nevertheless, the instability inherent in the SLM process frequently results in irregularities in the quality of the fabricated components. As a result, this hinders the continuous progress and wider acceptance of SLM technology. Addressing these challenges, in-process quality control strategies during SLM operations have emerged as effective remedies for mitigating the quality inconsistencies found in the final components. This study focuses on utilizing optical emission spectroscopy and IR thermography to continuously monitor and analyze the SLM process within the powder bed, with the aim of strengthening process control and minimizing defects.
Event

Program - 2024 AeroTech

2024-04-29
Explore AeroTech's Key Tracks, Sessions, and Presentations on hot topics in the Aerospace industry.
Event

Exhibit & Sponsor - 2025 AeroTech

2024-04-29
Secure your space! Reserve your AeroTech exhibit booth and/or sponsorship today — and take advantage of early-bird opportunities at AeroTech® 2024.
Event

Exhibit & Sponsor - 2025 AeroTech

2024-04-29
Secure your space! Reserve your AeroTech exhibit booth and/or sponsorship today — and take advantage of early-bird opportunities at AeroTech® 2024.
Event

Contact - AeroTech®

2024-04-29
Contact the AeroTech team for any questions around exhibiting, sponsorship, event programming, and more.
Event

AeroTech

2024-04-29
AeroTech is your passport to explore the most remarkable advancements in aerospace technology. Form supersonic aircraft to sustainable aviation and propulsion, AeroTech covers it all.
Event

Social Media Toolkit - 2024 AeroTech®

2024-04-29
Check out the topics of discussion at the 2024 AeroTech event, such as aircraft systems, advanced air mobility, manufacturing and materials, and so much more!
Technical Paper

Enhancing Mechanical Behavior of As-Built Polyamide 6+Glass Fiber Produced with Fused Filament Fabrication via Varying Infill Pattern

2024-03-15
2024-01-5035
Additive manufacturing is currently being investigated for the production of components aiming for near net shape. The presence of chopped glass fibers with PA6 increases the melt viscosity and also changes the coefficients of thermal expansion and increase the heat resistance. The great dimensional stability obtained with the fusion of the PA6 with the fiber results in an extremely durable material even in adverse environments for many other materials used in 3D printing. PA6 is a material oriented for users who need to make structural parts and exposed to high mechanical stresses. The impact, test tensile, and flexural results for as-built PA6 with various infill patterns, including grid, triangle, trihexagon, and cubic, are tested.
Technical Paper

Gantry Horizontal Slug Riveting System

2024-03-05
2024-01-1924
Previously given Paper 09ATC-0232 delivered at the SAE Aerotech conference in Seattle in 2009 reports on the E6000 machine installing slug rivets with the EMR. Paper 2015-01-2491given at the SAE conference in Seattle in 2015 reports on index head rivets being installed with screw driven squeeze process. This paper reports on the screw driven squeeze process installing unheaded slug rivet which is a more complex process. We also report on improvements to the fixture automation.
Technical Paper

Implementation of Long Assembly Drills for 777X Flap Carriers

2024-03-05
2024-01-1923
Large diameter, tightly toleranced fastener patterns are commonplace in aerospace structures. Satisfactory generation of these holes is often challenging and can be further complicated by difficult or obstructed access. Bespoke tooling and drill jigs are typically used in conjunction with power feed units leading to a manual, inflexible, and expensive manufacturing process. For 777X flap production, Boeing and Electroimpact collaborated to create a novel, automated solution to generate the fastener holes for the main carrier fitting attachment pattern. Existing robotic automation used for skin to substructure assembly was modified to utilize extended length (up to 635mm), bearing-supported drill bar sub-assemblies. These Long Assembly Drills (LADs) had to be easily attached and detached by one operator, interface with the existing spindle(s), supply cutting lubricant, extract swarf on demand, and include a means for automatically locating datum features.
Technical Paper

Prevention of Operational Errors in Semi-Automatic Riveters by Machine Vision Systems Using Deep Learning

2024-03-05
2024-01-1944
This paper reports the development of an operation support system for production equipment using image processing with deep learning. Semi-automatic riveters are used to attach small parts to skin panels, and they involve manual positioning followed by automated drilling and fastening. The operator watches a monitor showing the processing area, and two types of failure may arise because of human error. First, the operator should locate the correct position on the skin panel by looking at markers painted thereon but may mistakenly cause the equipment to drill at an incorrect position. Second, the operator should prevent the equipment from fastening if they see chips around a hole after drilling but may overlook the chips; chips remaining around a drilled hole may cause the fastener to be inserted into the hole and fastened at an angle, which can result in the whole panel having to be scrapped.
X