Refine Your Search

Topic

Search Results

Technical Paper

Use of Accurate Simulation Workflows to Optimize Waste Heat Recovery from Thermoacoustic Engines

2024-04-09
2024-01-2590
Thermoacoustic heat engines convert heat into useful energy by generating acoustic waves from a heat source that can then be extracted as useful work. These engines are inexpensive, robust, versatile, and capable of extracting energy from a wide variety of heat sources ranging from waste heat from power plants to exhaust heat of vehicles. In this article, our investigation focuses on using simulation workflows to improve the performance of thermoacoustic engines. We begin with validating the workflows with published data for both traveling wave and standing wave thermoacoustic engines. Following that, we investigate the effect of changing the working fluid and the operating pressure to increase acoustic power. This study uses a coupled PowerFLOW™ and PowerTHERM™ methodology to simulate the buoyancy-driven flows that generate acoustic pressure waves. Good correlations were observed for both traveling and standing wave thermoacoustic engines.
Journal Article

Numerical Simulation of On-Road Wind Conditions for Interior Wind Noise of Passenger Vehicles

2023-05-08
2023-01-1124
Traditionally vehicles are designed for wind noise under ideal steady wind conditions. But, passenger comfort is affected by high modulation of cabin noise while cruising in traffic due to variations of instantaneous wind speed and direction from driving through large-scale turbulence. In consequence, designing a vehicle for the best performance in a low-turbulence wind tunnel may lead to issues during on-road conditions. To predict the interior noise corresponding to on-road turbulence, a simulation approach is proposed combining an upstream turbulence flow simulation with an SEA vehicle model. This work is an extension of existing well validated procedures for steady wind conditions. Time-segmented transient loads on panels and steady-state structural acoustics transfer functions are combined, producing interior noise results for a series of overlapping time segments.
Technical Paper

Simulating HVAC Noise in Vehicle Cabin with Material Absorption Modelling

2022-03-29
2022-01-0302
Design of HVAC system plays an important role in acoustic comfort for passengers. With automotive world moving towards electrical vehicles where powertrain noise is low, designing low noise HVAC system is becoming more important. For an automobile manufacturer, ability to predict the production vehicle cabin noise at the early design stage is important as it allows more freedom for design changes, which can be incorporated in the vehicle at lower cost. Although HVAC prototype and system level testing at early design stage is possible for noise estimation but flow field is not visible in test that makes difficult to improve design. CFD simulation can provide detailed information on flow field, noise source strength and location. But in such a simulation, accurate prediction has been a challenge due to the inability of CFD tools to model acoustic absorptive characteristics of interior walls of cabin.
Technical Paper

Thermal Validation and Design Study of Fast Filling of Hydrogen Tank

2022-03-29
2022-01-0688
For fuel cell vehicles, it is essential that the hydrogen tank be both compact and have sufficient hydrogen to ensure reasonable driving range for which there is a need to pressurize the hydrogen in the tank at levels much higher than that of atmospheric pressure. Furthermore, fast filling is an important consideration in order to minimize time to refuel hydrogen in the tank. In this article, we investigate a Computational Fluid Dynamics (CFD) methodology to see whether we can simulate the fast filling of the hydrogen tank. We performed simulations on an existing validation case using coupled simulation approach between the PowerFLOW® flow solver and PowerTHERM® the thermal solver. For an accurate simulation at elevated pressure levels, we implemented a real gas behavior that is more accurate than the ideal gas equation of state for under these conditions. We observe good agreement with experimental data for both bulk and local variations in temperature.
Technical Paper

Thermal Validation Study of AdBlue® Melting for Off Highway Vehicles

2022-03-29
2022-01-0560
Selective Catalytic Reduction (SCR) is a process where one injects an aqueous solution of urea into a diesel exhaust system in order to reduce NOx emissions. The urea solution known as AdBlue® or Diesel Exhaust Fluid (DEF) is stored in a DEF Tank that can under cold weather conditions freeze over. Since AdBlue® is unusable while frozen, we use heaters installed in the tanks to melt AdBlue® with government regulations mandating time required to melt AdBlue® in the tank. In this article, we investigate whether a CFD (Computational Fluid Dynamics) based methodology can accurately evaluate time required in melting AdBlue® for a given DEF Tank and heater coil design for a production vehicle as per standard testing procedure. Simulations used a coupled methodology with PowerFLOW® as the flow solver and PowerTHERM® as the thermal solver. The flow simulation did require an accurate modelling of phase change from solid to liquid for AdBlue®.
Technical Paper

Simulation Driven Design of HVAC Systems under Competing HVAC Noise and Defrost Performance Requirements

2021-08-31
2021-01-1020
It is particularly easy to get tunnel vision as a domain expert, and focus only on the improvements one could provide in their area of expertise. To make matters worse, many Original Equipment Manufacturers (OEMs) are silo-ed by domain of expertise, unconsciously promoting this single mindedness in design. Unfortunately, the successful and profitable development of a vehicle is dependent on the delicate balance of performance across many domains, involving multiple physics and departments. Taking for instance the design of a Heating, Ventilation & Air Conditioning (HVAC) system, the device’s primary function is to control the climate system in vehicle cabins, and more importantly to make sure that critical areas on the windshield can be defrosted in cold weather conditions within regulation time. With the advent of electric and autonomous vehicles, further importance is now also placed on the energy efficiency of the HVAC, and its noise.
Technical Paper

Simulating Bonnet Flutter - Unsteady Aerodynamics and Its Structural Response

2021-04-06
2021-01-0946
Government regulations and consumer needs are driving automotive manufacturers to reduce vehicle energy consumption. However, this forms part of a complex landscape of regulation and customer needs. For instance, when reducing aerodynamic drag or vehicle weight for efficiency other important factors must be taken into account. This is seen in vehicle bonnet design. The bonnet is a large unsupported structure that is exposed to very high and often fluctuating aerodynamic loads, due to travelling in the wake of other vehicles. When travelling at high speed and in close proximity to other vehicles this unsteady aerodynamic loading can force the bonnet structure to vibrate, so-called “bonnet flutter”. A bonnet which is stiff enough to not flutter may be either too heavy for efficiency or insufficiently compliant to meet pedestrian safety requirements. On the other hand, a bonnet which flutters may be structurally compromised or undermine customer perceptions of vehicle quality.
Journal Article

Near-to-Far Wake Characteristics of Road Vehicles Part 2: Influence of Cross Winds and Free-Stream Turbulence

2021-04-06
2021-01-0949
Conventional assessments of the aerodynamic performance of ground vehicles have, to date, been considered in the context of a vehicle that encounters a uniform wind field in the absence of surrounding traffic. Recent vehicle-platooning studies have revealed measurable fuel savings when following other vehicles at inter-vehicle distances experienced in every-day traffic. These energy savings have been attributed in large part to the air-wakes of the leading vehicles. This set of three papers documents a study to examine the near-to-far regions of ground-vehicle wakes (one to ten vehicle lengths), in the context of their potential influence on other vehicles. Part two of this three-part paper documents the influence of the ambient winds on the development of the wake behind a vehicle.
Journal Article

Near-to-Far Wake Characteristics of Road Vehicles Part 3: Influence of Multi-Vehicle Interactions

2021-04-06
2021-01-0959
Conventional assessments of the aerodynamic performance of ground vehicles have, to date, been considered in the context of a vehicle that encounters a uniform wind field in the absence of surrounding traffic. Recent vehicle-platooning studies have revealed measurable fuel savings when following other vehicles at inter-vehicle distances experienced in every-day traffic. These energy savings have been attributed in large part to the air-wakes of the leading vehicles. This set of three papers documents a study to examine the moderate-to-far regions of ground-vehicle wakes (one to ten vehicle lengths), in the context of their potential influence on other vehicles. Part Three of this three-part paper documents the wake characteristics for multi-vehicle scenarios of two or three vehicles, in single-lane or two-lane arrangements.
Journal Article

Near-to-Far Wake Characteristics of Road Vehicles Part 1: Influence of Ground Motion and Vehicle Shape

2021-04-06
2021-01-0957
Conventional assessments of the aerodynamic performance of ground vehicles have, to date, been considered in the context of a vehicle that encounters a uniform wind field in the absence of surrounding traffic. Recent vehicle-platooning studies have revealed measurable fuel savings when following other vehicles at inter-vehicle distances experienced in every-day traffic. These energy savings have been attributed in large part to the air-wakes of the leading vehicles. This set of three papers documents a study to examine the near-to-far regions of ground-vehicle wakes (one to ten vehicle lengths), in the context of their potential influence on other vehicles. Part one of this three-part paper documents principally the influence of vehicle shape on the development of its wake.
Technical Paper

Acoustic Performance Analysis of Automotive HVAC Duct Designs Using a Lattice-Boltzmann Based Method and Correlation with Hemi-Anechoic Chamber

2020-04-14
2020-01-1263
Acoustic comfort of automotive cabins has progressively become one of the key attributes of passenger comfort within vehicle design. Wind noise and the heating, ventilation, and air conditioning (HVAC) system noise are two of the key contributors to noise levels heard inside the car. The increasing prevalence of hybrid technologies and electrification has an associated reduction in powertrain noise levels. As such, the industry has seen an increasing focus on understanding and minimizing HVAC noise, as it is a main source of noise in the cabin particularly when the vehicle is stationary. The complex turbulent flow path through the ducts, combined with acoustic resonances can potentially lead to significant noise generation, both broadband and tonal.
Technical Paper

In the Wake of Others: Unsteady Bonnet Surface Pressure Predictions and Measurements

2020-04-14
2020-01-0676
In use cars often drive through the wakes of other vehicles. It has long been appreciated that this imposes a fluctuating onset flow which can excite a structural response in vehicle panels, particularly the bonnet. This structure must be designed to be robust to such excitation to guarantee structural integrity and maintain customer expectations of quality. As we move towards autonomous vehicles and exploit platoons for drag reduction, this onset flow condition merits further attention. The work reported here comprises both measurements and simulation capturing the unsteady pressure distribution over the bonnet of an SUV following a similar vehicle at high speed and in relatively close proximity. Measurements were taken during track testing and include 48 static measurement locations distributed over the bonnet where the unsteady static pressures were recorded.
Journal Article

Large Scale Multi-Disciplinary Optimization and Long-Term Drive Cycle Simulation

2020-04-14
2020-01-1049
Market demands for increased fuel economy and reduced emissions are placing higher aerodynamic and thermal analysis demands on vehicle designers and engineers. These analyses are usually carried out by different engineering groups in different parts of the design cycle. Design changes required to improve vehicle aerodynamics often come at the price of part thermal performance and vice versa. These design changes are frequently a fix for performance issues at a single performance point such as peak power, peak torque, or highway cruise. In this paper, the motivation for a holistic approach in the form of multi-disciplinary optimization (MDO) early in the design process is presented. Using a Response-surface Informed Transient Thermal Model (RITThM) a vehicle's thermal performance through a drive cycle is predicted and correlated to physical testing for validation.
Journal Article

Investigation of Wave Stripping Models on a Generic Wing-Mirror Using a Coupled Level-Set Volume of Fluid Simulation

2020-04-14
2020-01-0682
Predicting Exterior Water Management is important for developing vehicles that meet customer expectations in adverse weather. Fluid film methods, with Lagrangian tracking, can provide spray and surface water simulations for complex vehicle geometries in on-road conditions. To cope with this complexity and provide practical engineering simulations, such methods rely on empirical sub-models to predict phenomena such as the film stripping from the surface. Experimental data to develop and validate such models is difficult to obtain therefore here a high-fidelity Coupled Level-set Volume of Fluid (CLSVOF) simulation is carried out. CLSVOF resolves the interface of the liquid in three dimensions; allowing direct simulation of film behaviour and interaction with the surrounding air. This is used to simulate a simplified wing-mirror, with air flow, on which water is introduced.
Technical Paper

Numerical Investigation of Wiper Drawback

2019-04-02
2019-01-0640
Windscreen wipers are an integral component of the windscreen cleaning systems of most vehicles, trains, cars, trucks, boats and some planes. Wipers are used to clear rain, snow, and dirt from the windscreen pushing the water from the wiped surface. Under certain conditions however, water which has been driven to the edge of the windscreen by the wiper can be drawn back into the driver’s field of view by aerodynamic forces introduced by the wiper motion. This is wiper drawback, an undesirable phenomenon as the water which is drawn back on to the windscreen can reduce driver’s vision and makes the wiper less effective. The phenomena of wiper drawback can be tested for in climatic tunnels using sprayer systems to wet the windscreen. However, these tests require a bespoke test property or prototype vehicle, which means that the tests are done fairly late in the development of the vehicle.
Journal Article

New Theoretical Approach for Weight Reduction on Cylinder Head

2015-04-14
2015-01-0495
Designing a lightweight and durable engine is universally important from the standpoints of fuel economy, vehicle dynamics and cost. However, it is challenging to theoretically find an optimal solution which meets both requirements in products such as the cylinder head, to which various thermal loads and mechanical loads are simultaneously applied. In our research, we focused on “non-parametric optimization” and attempted to establish a new design approach derived from the weight reduction of a cylinder head. Our optimization process consists of topology optimization and shape optimization. In the topology optimization process, we explored an optimal structure with the theoretically-highest stiffness in the given design space. This is to provide an efficient structure for pursuing both lightweight and durable characteristics in the subsequent shape optimization process.
Journal Article

An Integrated Methodology for Defining, Modeling, and Validating Complex Automotive Systems

2014-04-01
2014-01-0760
Systems engineering is not a new discipline for todays automotive OEMs and suppliers. So, why is it that many feel the discipline is under-utilized or not utilized at all in main-stream product development? For those that do believe systems engineering is a key activity in the development cycle, why is it common to disagree on a definition of what it is or how it manifests itself in the development cycle? If we examine the development activity of leading OEM's and suppliers in any industry, there can be no doubt that product development is a complex and intensive activity. Many disciplines are utilized with many specialized skills deployed throughout the lifecycle of the typical product, and even more so in the automotive industry. One can point to several processes that seem to indicate the presence of systems engineering, yet the ability to clearly define whether or not - and to what degree - we leverage systems engineering is still difficult.
Technical Paper

Vehicle with Wind Powered Generator

2014-04-01
2014-01-1953
Today, some vehicles include a regenerative-braking system such as the electrical motor-generator that converts the vehicle's kinetic energy into electrical energy to recharge one or more vehicle batteries. The idea is to use air flow to produce additional electrical energy in response to deceleration of the vehicle. With the Wind Power Generator System (WPGS) as a green system, a vehicle can produce extra energy, reduce gasoline usage, and reduce air pollution.
Technical Paper

Overcoming Barriers to a Successful Vehicle Modularity Strategy

2013-04-08
2013-01-1164
To increase sales and market position, automotive OEMs must have comprehensive strategies for developing innovative products while continuing to reduce costs, increase quality and accelerate time to market. One of the strategies that can help them to achieve these objectives is strategic modularity. A modularization strategy can help automakers reduce cost and time to market, as well as improve quality and launch readiness. While a significant number of OEMs are adopting modularity strategies, the realization of benefits has been, for many OEMs, limited in scope and scale. These limitations are due to: Process issues in managing dependencies across multiple programs and platforms; Measurements which discourage modularity adoption, together with an inability to measure enterprise costs; Organizational issues associated with siloed structures, a lack of clear roles and responsibilities, and the management of disparate groups across the extended enterprise.
Technical Paper

Efficient Knowledge Management with an SBA: How Innovative Technology can Revive Older Ones

2013-04-08
2013-01-1405
The development of new vehicle is becoming increasingly complex: proliferation of on-board electronics, development of hybrid advanced powertrain technologies, globalization of design and production, to name a few. At the same time, companies are straining constantly to better meet consumer desires while reducing time to market and production costs. Definitely a tough challenge! The ever growing amount of data (both in variety and in number of sources) that the enterprise generates is central to this situation. Compiling and processing this data efficiently is easier said than done. And failure to do so can lead to critical business opportunities being lost! A solution exists. It comes from the web where an innovative approach was indeed mandatory to cope with the billions of documents to search. It is called “search technology” and is engrained in the DNA of EXALEAD.
X