Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of New Powertrain System for the Global Deployment of Hybrid Vehicles

2023-04-11
2023-01-0479
A new hybrid system has been developed to increase the permissible system weight and raise dynamic performance/system efficiency for the global rollout of Honda's electric vehicles. The powertrain consists of a 2.0L direct injection engine, a Front Drive Unit (FDU) with a built-in traction motor/generator and gear that directly transmit engine torque to the wheels (engine driving gear), a Power Control Unit (PCU) mounted on the FDU, and an Intelligent Power Unit (IPU) mounted under the cargo area. The FDU has a higher RPM (+12%) and higher torque (+6%) traction motor for enhanced launch acceleration performance and maximum vehicle speed settings tailored to regional needs. In addition, a new engine driving gear for low-speed driving has been added to heighten system efficiency by avoiding traction motor driving in low-speed, high-load areas where electrical losses are high, and instead using a driving mode with an engine driving gear (ENGINE MODE).
Journal Article

Constitutive, Formability, and Fracture Characterization of 3rd Gen AHSS with an Ultimate Tensile Strength of 1180 MPa

2021-04-06
2021-01-0308
The superior formability and local ductility of the emerging class of third generation of advanced high-strength steels (3rd Gen AHSS) compared to their conventional counterparts of the same strength level offer significant advantages for automotive lightweighting and enhanced crash performance. Nevertheless, studies on the material behavior of 3rd Gen AHSS have been limited and there is some uncertainty surrounding the applicability of developed methodologies for conventional dual-phase (DP) steels to this new class of AHSS. The present paper provides a comprehensive study on the quasi-static and dynamic constitutive behavior, formability characterization and prediction, and the fracture behavior of two commercial 3rd Gen AHSS with an ultimate strength of 1180 MPa that will be contrasted with a conventional DP1180. The hardening response to large strain levels was determined experimentally using tensile and shear tests and then validated with 3-D simulations of tensile tests.
Journal Article

The Influence of the Through-Thickness Strain Gradients on the Fracture Characterization of Advanced High-Strength Steels

2018-04-03
2018-01-0627
The development and calibration of stress state-dependent failure criteria for advanced high-strength steel (AHSS) and aluminum alloys requires characterization under proportional loading conditions. Traditional tests to construct a forming limit diagram (FLD), such as Marciniak or Nakazima tests, are based upon identifying the onset of strain localization or a tensile instability (neck). However, the onset of localization is strongly dependent on the through-thickness strain gradient that can delay or suppress the formation of a tensile instability so that cracking may occur before localization. As a result, the material fracture limit becomes the effective forming limit in deformation modes with severe through-thickness strain gradients, and this is not considered in the traditional FLD. In this study, a novel bending test apparatus was developed based upon the VDA 238-100 specification to characterize fracture in plane strain bending using digital image correlation (DIC).
Technical Paper

Shearographic Nondestructive Testing for High-Pressure Composite Tubes

2018-04-03
2018-01-1219
In response to the need for lightweight design in industries, composite materials are increasingly used to replace traditional metal tubes. However, subsurface defects such as voids, delaminations, and microcracks are still remaining common issues in composite pressure tubes. This paper introduces an application of Digital Shearography method in the Non-Destructive Testing (NDT) of high-pressure composite tubes. A new prototype high-pressure composite tube with a working pressure of 1000 psi range is tested using the digital Shearography method. To detect the sub-surface defects, a reference Shearographic phase map is created at 0 psi state, after that the composite tube is pressured using an oil pump, then the second Shearographic phase map is created at the pressured state. By subtracting the two shearographic phase maps created in different pressure state, the sub-surface defects can be identified clearly. The Shearographic NDT result is then compared with CT scan result.
Technical Paper

Effects of Blanking Conditions to Edge Cracking in Stamping of Advanced-High Strength Steels (AHSS)

2018-04-03
2018-01-0626
Practical evaluation and reduction of edge cracking are two challenging issues in stamping AHSS for automotive body structures. In this paper, the effects of the shear clearance and shear rake angle on edge cracking were investigated with three different grades of AHSS; TRIP780, DP 980, and DP 1180. Five different shear clearances, between 5% and 25% of material thickness, were applied to the flexible shearing machine to generate samples for the half specimen dome test (HSDT). The shear loads and the shear edge quality were thoroughly characterized and compared. The HSDT created the edge forming limits as compared to the base material forming limit diagram. The load-displacement curve was acquired by the load-cell and the strain distribution was measured using a digital image correlation (DIC) system during the dome test.
Technical Paper

Diesel Engine Cylinder Deactivation for Improved System Performance over Transient Real-World Drive Cycles

2018-04-03
2018-01-0880
Effective control of exhaust emissions from modern diesel engines requires the use of aftertreatment systems. Elevated aftertreatment component temperatures are required for engine-out emissions reductions to acceptable tailpipe limits. Maintaining elevated aftertreatment components temperatures is particularly problematic during prolonged low speed, low load operation of the engine (i.e. idle, creep, stop and go traffic), on account of low engine-outlet temperatures during these operating conditions. Conventional techniques to achieve elevated aftertreatment component temperatures include delayed fuel injections and over-squeezing the turbocharger, both of which result in a significant fuel consumption penalty. Cylinder deactivation (CDA) has been studied as a candidate strategy to maintain favorable aftertreatment temperatures, in a fuel efficient manner, via reduced airflow through the engine.
Technical Paper

Elastomer Characterization for Digital Prototyping and Its Validation through Physical Testing

2017-01-10
2017-26-0181
There is an increased use of elastomers in the automotive industry for sealing, noise isolation, load dampening, insulation, etc., because of their key properties of elasticity and resilience. Elastomers are used in supercharger application for dampening the torsional fluctuation from the engine, to reduce noise issues. Finite element modeling of elastomers is challenging because of its non-linear behavior in different loading directions. It also undergoes very large elemental deformation (~up to 200%), which results in additional complexities in getting numerical convergence. Finally, it also exhibits viscous and elastic behavior simultaneously (viscoelastic effect) and it undergoes softening with progressive cyclic loading (Mullins effect). The present study deals with the characterization of elastomers for its modeling in commercial finite element software packages and verification of some predicted design parameters with physical testing.
Journal Article

Multiscale Modeling Approach for Short Fiber Reinforced Plastic Couplings

2017-01-10
2017-26-0243
The demand for injection molded reinforced plastic products used in the automotive industry is growing due to the capability of the material for volume production, high strength to weight ratio, and its flexibility of geometry design. On the other hand, the application of fiber filled plastic composites has been challenging and subject of research during past decades due to the inability to accurately predict the mechanical strength and stiffness behavior owing to its anisotropic characteristics. This paper discusses a numerical simulation based technique using multiscale (2 scale Micro-Macro) modeling approach for short fiber reinforced plastic composites. Fiber orientation tensors and knit lines are predicted in microscale analysis using Autodesk Inc.’s Moldflow® software, and structural analysis is performed considering the homogenized structure in macroscale analysis using ANSYS® software tool.
Journal Article

Genetic Algorithm Based Gear Shift Optimization for Electric Vehicles

2016-06-17
2016-01-9141
In this paper, an optimization method is proposed to improve the efficiency of a transmission equipped electric vehicle (EV) by optimizing gear shift strategy. The idea behind using a transmission for EV is to downsize the motor size and decrease overall energy consumption. The efficiency of an electric motor varies with its operating region (speed/torque) and this plays a crucial role in deciding overall energy consumption of EVs. A lot of work has been done to optimize gear shift strategy of internal combustion engines (ICE) based automatic transmission (AT), and automatic-manual transmissions (AMT), but for EVs this is still a new area. In case of EVs, we have an advantage of regeneration which makes it different from the ICE based vehicles. In order to maximize the efficiency, a heuristic search based algorithm - Genetic Algorithm (GA) is used.
Journal Article

Both-Sides Welding Technology for Resin Fuel Tubes

2016-04-05
2016-01-0506
This study developed technology for simultaneously welding heterogeneous resin tubes in order to weld and integrate resin tubes with two different specifications (low temperature and high temperature). The aim of integration was cost and weight reduction. The cost reduction due to reducing the number of parts exceeded the increase in material cost due to a change to resin materials. Base material fracture of the resin tubes was set as the breaking format condition, and the welding parameters of the joint part rotations and the friction time between the joint part and the resin tubes were specified as the weld strength judgment standard. In addition, the fused thickness determined by observing the cross-section after welding was specified as the weld quality judgment standard. The range over which weld boundary peeling does not occur and weld strength is manifest was clarified by controlling the welding parameters and the fused thickness.
Technical Paper

The Method to Predict the Vibration Transfer Function of Hydraulic Engine Mount on a Vehicle

2016-04-05
2016-01-1321
The CAE method to predict the vibration transfer function of the hydraulic engine mount on a vehicle with sufficient precision and calculation time without prototype cars was developed. The transfer function is given in the following steps. First, rubber deformation form under the power train weight loaded must be predicted. It’s obtained by using a reduction model of an engine mount, as a unit, which doesn’t have its fluid sealed inside, with the technique to get the static spring characteristics in a non-linear relationship. Second, Young’s modulus and structural damping coefficient for the deformed rubber must be given. As for these characteristics, ignoring the relations between these values and strain, the constant values are used. This considerably reduces computation time and model size. Next, the reduction model and the fluid model have must be combined to express actual product. In this step, coupled analysis for fluid and structure is used.
Technical Paper

Effect of Noise Factors on Seizure Limit Performance in Engine Main Bearings

2016-04-05
2016-01-0488
In order to determine the seizure limit of the main bearings of passenger vehicles under actual operating conditions, evaluations were conducted in environments containing noise factors (Various factors which designer cannot adjust and which make function vary were defined as noise factors in this paper.) [1,2] It was shown that noise factors have an effect on seizure limit performance in relation to performance under ideal test conditions (test conditions in which no noise is present). In relation to oil properties, the results showed that a reduction in viscosity as a result of dilution affected seizure limit performance. In relation to the shape of the sliding sections of the test shaft, seizure limit performance declined in a shaft in which the central section was swollen (“convex shaft” below).
Journal Article

Development of an Electric-based Power Steering System

2015-04-14
2015-01-1567
In this research, a three degree-of-freedom (DOF) rack-type electric-based power steering (EPS) model is developed. The model is coupled with a three DOF vehicle model and includes EPS maps as well as non-linear attributes such as vibration and friction characteristics of the steering system. The model is simulated using Matlab's Simulink. The vibration levels are quantified using on-vehicle straight-line test data where strain-gauge transducers are placed in the tie-rod ends. Full vehicle kinematic and compliance tests are used to verify the total steering system stiffness levels. Frequency response tests are used to adjust tire cornering stiffness levels as well as the tire dynamic characteristics such that vehicle static gain and yaw natural frequency are achieved. On-center discrete sinusoidal on-vehicle tests are used to further validate the model.
Journal Article

Elementary Body Structure Analysis

2015-04-14
2015-01-1321
Recently vehicle development timeline is becoming shorter, so there is an urgent need to be able to develop vehicles with limited resources. This means the efficiency of the body structure development process must be improved. Specifically it is important to reduce the amount of design re-work required to meet performance targets as this can have a large influence on the body development time. In order to reduce the afore mentioned design re-work, we developed simple calculation models to apply a “V-Flow Development Process” to the preliminary stage design of the automobile body structure. The “V-Flow” advantages are as follows: (1) simple and easy to use, (2) defects are found at early stage, (3) avoids the downward flow of the defects. The advantage of preliminary stage design is that there is design flexibility since not many specifications have been determined yet.
Technical Paper

Adoption of Floating Seat in a Vehicle to Reduce Seat Vibration

2015-04-14
2015-01-1122
Seat vibration when a vehicle is idling or in motion is an issue in automobile development. In order to reduce this vibration, dynamic damper or inertia mass is widely used. These countermeasures increases vehicle's weight and causes bad fuel-efficiency. Some new ways to reduce the vibration without weight increase are needed. One of that is the floating seat. Seat vibration has been reduced by controlling seat resonance frequencies. In order to control resonance frequency, the structures of the seat-mounting unit are replaced with floating structures using rubber bushings. It was demonstrated that partially replacing the mounting unit with floating structures makes it possible to control the resonance frequencies of the entire seat. The issue of balancing vibration reduction with strength and durability and crash safety performance caused by the fitting of rubber bushings to the seat-mounting unit was addressed using stopper structures optimized for each type of input.
Technical Paper

Improved Scratch Resistant Clear Coat for High Gloss Interior

2015-04-14
2015-01-0733
Dark, high gloss decorative finishes (i.e. piano black) are gaining increased application and demand in vehicle interiors; due to interior stylists' desire for this look. One significant concern with this trend is that scratches, and other appearance related defects such as orange peel (waviness), are more apparent to the customer. To address this issue, a highly scratch-resistant 2K clearcoat formulation was developed to minimize visible surface scratches, while also yielding minimal orange peel and exceptional DOI (distinctness of image); all while being applied using typical application techniques in the part finishing market. This output was accomplished by first benchmarking the consumer electronics market for appearance and scratch resistance, and then setting targets through that research.
Technical Paper

High Porosity Substrates for Fast-Light-Off Applications

2015-04-14
2015-01-1009
Regulations that limit emissions of pollutants from gasoline-powered cars and trucks continue to tighten. More than 75% of emissions through an FTP-75 regulatory test are released in the first few seconds after cold-start. A factor that controls the time to catalytic light-off is the heat capacity of the catalytic converter substrate. Historically, substrates with thinner walls and lower heat capacity have been developed to improve cold-start performance. Another approach is to increase porosity of the substrate. A new material and process technology has been developed to significantly raise the porosity of thin wall substrates (2-3 mil) from 27-35% to 55% while maintaining strength. The heat capacity of the material is 30-38% lower than existing substrates. The reduction in substrate heat capacity enables faster thermal response and lower tailpipe emissions. The reliance on costly precious metals in the washcoat is demonstrated to be lessened.
Technical Paper

Improvement in Washing Efficiency in Windshield Washer

2015-04-14
2015-01-1378
We developed a windshield washer system that enhances washing performance while maintaining low consumption of windshield washer fluid. The system reduces user stress by shortening the amount of time required to remove dirt and maintaining visibility through the windshield. We analyzed the mechanism through which the windshield wiper and windshield washer remove dirt from the glass surface to improve cleaning efficiency. The mechanism consists of a sequence in which the windshield washer fluid splashes down on the glass surface and lifts dirt which is then wiped away by the windshield wiper blade. We defined the amount of windshield washer fluid needed and the time from splashdown to wiping required to lift dirt and wipe it away with the wiper. Based on this mechanism, we developed a wiper arm with built-in washer nozzles.
Technical Paper

Transient Control Technology of Spark Assisted HCCI

2015-04-14
2015-01-0880
Amidst the rising demand to reduce CO2 and other greenhouse gas emissions in recent years, gasoline homogeneous-charge compression ignition (HCCI) has gained attention as a technology that achieves both low NOx emissions and high thermal efficiency by means of lean combustion. However, gasoline HCCI has low robustness toward intracylinder temperature variations, therefore the problems of knocking and misfiring tend to occur during transient operation. The authors verified the transient operation control of HCCI by using a 4-stroke natural aspiration (NA) gasoline engine provided with direct injection (DI) and a variable valve timing and a lift electronic control system (VTEC) for intake air and exhaust optimized for HCCI combustion. This report describes stoichiometry spark ignition (SI) to which external exhaust gas recirculation (EGR) was introduced, HCCI ignition switch control, and changes in the load and number of engine revolutions in the HCCI region.
Journal Article

Independent Left and Right Rear Toe Control System

2014-04-01
2014-01-0063
Honda has developed an “Independent Left and Right Rear Toe Control System” that can achieve stable cornering performance and agile handling. We believe the issue that should be resolved in the next generation of ESC is the expansion of stability and agility into the general operation area. We examined how to accomplish this aim, and control of the independent rear toe angle was decided to be an appropriate method. In addition, a method for mounting the system without using a dedicated suspension was proposed. If left and right toe angles can be controlled independently, toe angle control and normal 4WS control become possible at the same time. In this paper, we will discuss the fundamental principle of independent toe angle control and the system configuration. Also, “INOMAMA Handling” (at driver's will) achieved by this system, as well as the fun and safe driving that are achieved as a result will be shown.
X