Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Simulation of the Flow-Field Around a Generic Tractor-Trailer Truck

2004-03-08
2004-01-1147
In the present work computational fluid dynamics (CFD) simulations of the flow field around a generic tractor-trailer truck are presented and compared with corresponding experimental measurements. A generic truck model was considered which is a detailed 1/8th scale replica of a Class-8 tractor-trailer truck. It contained a number of details such as bumpers, underbody, tractor chassis, wheels, and axles. CFD simulations were conducted with wind incident on the vehicle at 0 and 6 degree yaw. Two different meshing strategies (tet-dominant and hex-dominant) and three different turbulence models (Realizable k-ε, RNG k-ε, and DES) are considered. In the first meshing strategy an unstructured tetrahedral mesh was created over a large region surrounding the vehicle and in its wake. In the second strategy the mesh was predominantly hexahedral except for a few narrow regions around the front end and the underbody which were meshed with tetrahedral cells owing to complex topology.
Technical Paper

Combustion Development of the New International® 6.0L V8 Diesel Engine

2004-03-08
2004-01-1404
International has developed a new generation 6.0L V8 DI diesel engine for the Ford F-Series full size pick-up trucks. This new engine features a number of state-of-the-art technologies designed to meet the US 2004 heavy-duty engine emission legislation and other requirements from the customers. A set of combustion development strategies was created. They were, the use of cooled Exhaust Gas Recirculation (EGR) to inhibit NOx formation, a centrally located nozzle and an optimized combustion bowl to improve fuel distribution and reduce soot formation, the use of increased injection pressure to enhance air/fuel mixing and increase soot oxidation rate, and a Variable Geometry Turbocharger (VGT) to provide sufficient air/fuel ratio over a broad speed range. The combustion development took full advantage of the “virtual lab” tools.
Technical Paper

Comparison of Exhaust Emissions, Including Toxic Air Contaminants, from School Buses in Compressed Natural Gas, Low Emitting Diesel, and Conventional Diesel Engine Configurations

2003-03-03
2003-01-1381
In the United States, most school buses are powered by diesel engines. Some have advocated replacing diesel school buses with natural gas school buses, but little research has been conducted to understand the emissions from school bus engines. This work provides a detailed characterization of exhaust emissions from school buses using a diesel engine meeting 1998 emission standards, a low emitting diesel engine with an advanced engine calibration and a catalyzed particulate filter, and a natural gas engine without catalyst. All three bus configurations were tested over the same cycle, test weight, and road load settings. Twenty-one of the 41 “toxic air contaminants” (TACs) listed by the California Air Resources Board (CARB) as being present in diesel exhaust were not found in the exhaust of any of the three bus configurations, even though special sampling provisions were utilized to detect low levels of TACs.
Technical Paper

The Shift from a Component-based to a Systems Engineering Approach for Electrical and Electronic Product Engineering at International Truck and Engine Corporation

2002-11-18
2002-01-3084
This paper discusses the guiding philosophy, industry standards, and process and organizational elements utilized by International to shift to a systems engineering approach, within a ‘pull-through’ supply structure. The importance of requirements management in systems engineering, and associated methods are also discussed. The paper also highlights tools and techniques that support systems engineering. Additionally, the benefits of systems engineering are contrasted with the consequences of component-centric product engineering.
Technical Paper

Development of Truck Engine Technologies for Use with Fischer-Tropsch Fuels

2001-09-24
2001-01-3520
The Fischer-Tropsch (FT) process can be used to synthesize diesel fuels from a variety of energy sources, including coal, natural gas and biomass. Diesel fuels produced from the FT process are essentially sulfur-free, have very low aromatic content, and have excellent ignition characteristics. Because of these favorable attributes, FT diesel fuels may offer environmental benefits over transportation fuels derived from crude oil. Previous tests have shown that FT diesel fuel can be used in unmodified engines and have been shown to lower regulated emissions. Whereas exhaust emissions reductions from these previous studies have been impressive, this paper demonstrates that far greater exhaust emissions reductions are possible if the diesel engine is optimized to exploit the properties of the FT fuels. A Power Stroke 7.3 liter turbocharged diesel engine has been modified for use with FT diesel.
X