Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Effects of Piston Bowl Diameter on Combustion Characteristics of a Natural gas/Diesel Dual Fuel Engine

2019-12-19
2019-01-2173
Natural gas/diesel dual fuel engines have potential for a high thermal efficiency and low NOx emissions. However, they have the disadvantages of high unburned species emissions and lower thermal efficiencies at low loads (at low equivalence ratio). A way to solve this problem is to properly distribute the pilot fuel vapor in a natural-gas premixture. The combustion chamber geometry affects the combustion process since it influences the distribution of the pilot fuel vapor. This study investigates the influence of injection conditions and the piston bowl geometry on the performance and emissions of a dual fuel engine. Experiments were carried out using two pistons with different bowl diameters, 52 mm and 58 mm, at single-and two-stage diesel-fuel injection. The results show that the larger bowl provides lower hydrocarbon emissions at a lower equivalence ratio in the case of single-stage injection.
Journal Article

Ignition Characteristics of Ethane and Its Roles in Natural Gas for HCCI Engine Operation

2015-04-14
2015-01-0811
The ignition characteristics of each component of natural gas and the chemical kinetic factors determining those characteristics were investigated using detailed chemical kinetic calculations. Ethane (C2H6) showed a relatively short ignition delay time with high initial temperature; the heat release profile was slow in the early stage of the ignition process and rapid during the late stage. Furthermore, the ignition delay time of C2H6 showed very low dependence on O2 concentration. In the ignition process of C2H6, HO2 is generated effectively by several reaction paths, and H2O2 is generated from HO2 and accumulated with a higher concentration, which promotes the OH formation rate of H2O2 (+ M) = OH + OH (+ M). The ignition characteristics for C2H6 can be explained by H2O2 decomposition governing OH formation at any initial temperature.
Journal Article

Evaluation of Engine Performance and Combustion in Natural Gas Engine with Pre-Chamber Plug under Lean Burn Conditions

2014-11-11
2014-32-0103
Engines using natural gas as their main fuel are attracting attention for their environmental protection and energy-saving potential. There is demand for improvement in the thermal efficiency of engines as an energy-saving measure, and research in this area is being actively pursued on spark ignition engines and HCCI engines. In spark ignition gas engines, improving combustion under lean condition and EGR (exhaust gas recirculation) condition is an issue, and many large gas engines use a pre-chamber. The use of the pre-chamber approach allows stable combustion of lean gas mixtures at high charging pressure, and the reduction of NOx emissions. In small gas engines, engine structure prevents the installation of pre-chambers with adequate volume, and it is therefore unlikely that the full benefits of the pre-chamber approach will be derived.
Journal Article

A Potentiality of Dedicated EGR in SI Engines Fueled by Natural Gas for Improving Thermal Efficiency and Reducing NOx Emission

2014-11-11
2014-32-0108
Recently, a potentiality of Dedicated EGR (D-EGR) concept SI engine has been studied. This concept engine had four cylinders and operated with exhaust gas supplied from the single cylinder to the intake manifold. Compared with conventional SI engines, it was able to increase thermal efficiency and decrease CO, HC, and NOx emission by the high D-EGR ratio 0.25. In this study, numerical analysis of a SI engine with D-EGR system with various D-EGR ratios was conducted for detailed understanding the potentiality of this concept in terms of thermal efficiency and NOx emission. #1 cylinder of assumed engine was used as D-EGR cylinder that equivalence ratio varied from 0.6 to 3.4. Entire exhaust gas from #1 cylinder was recirculated to the other cylinders. The other cylinders run with this exhaust gas and new premixed air and fuel with various equivalence ratios from 0.6-1.0.
Journal Article

Fuel Design Concept for Robust Ignition in HCCI Engine and Its Application to Optimize Methane-Based Blend

2014-04-01
2014-01-1286
A fuel design concept for an HCCI engine based on chemical kinetics to optimize the heat release profile and achieve robust ignition was proposed, and applied to the design of the optimal methane-based blend. Ignition process chemistry of each single-component of natural gas, methane, ethane, propane, n-butane and isobutane, was analyzed using detailed chemical kinetic computations. Ethane exhibits low ignitability, close to that of methane, when the initial temperature is below 800 K, but higher ignitability, close to those of propane, n-butane and isobutane, when the initial temperature is above 1100 K. Furthermore, ethane shows a higher heat release rate during the late stage of the ignition process. If the early stage of an ignition process takes place during the compression stroke, this kind of heat release profile is desirable in an HCCI engine to reduce cycle-to-cycle variation during the expansion stroke.
Technical Paper

Two-Dimensional In-Cylinder Flow Field in a Natural Gas Fueled Spark Ignition Engine Probed by Particle Tracking Velocimetry and Its Dependence on Engine Specifications

1999-05-03
1999-01-1534
An experimental study was made to investigate in-cylinder flow field in a natural gas fueled spark ignition engine and the effects of engine specifications on in-cylinder flow field. The instantaneous two-dimentional flow fields in a single-cylinder visualization engine, which has 75mm bore and 62mm stroke, were measured in various cross sections perpendicular to the cylinder axis by using the laser light sheet PTV method at various crank angles during intake, compression, and expansion strokes over the wide range of piston combustion chamber configuration, top clearance, and nominal swirl ratio. Flow fields during compression and expansion strokes were also calculated using KIVA2 simulation code for better understanding of the measured results. The results showed that induction-generated swirl is getting concentric to the cylinder center in compression stroke, and is shifted in the radial direction in expansion stroke.
Technical Paper

In-Cylinder Combustion in a Natural Gas Fueled Spark Ignition Engine Probed by High Speed Schlieren Method and Its Dependence on Engine Specifications

1999-05-03
1999-01-1493
An experimental study was made to investigate the effect of combustion chamber configuration, top clearance, nominal swirl ratio, and spark plug position on in-cylinder combustion in a spark-ignited natural gas engine, which is converted from a direct injection diesel engine. Flame propagation in a single-cylinder visualization engine was measured from the cylinder axis direction by the high speed schlieren method, over the wide range of combustion chamber configuration, top clearance, nominal swirl ratio, and spark plug position. The results showed that flame does not propagate concentrically to the spark plug, but is shifted by swirl, which is the main flow in this engine. Smaller piston cavity diameter led to more rapid flame propagation, resulting in larger heat release rate and larger cylinder pressure. Piston cavity diameter does not affect the initial combustion until TDC.
X