Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Measurements in the Recirculation Path of a Fuel Cell System

2024-07-02
2024-01-3009
When using "green" hydrogen, fuel cell technology plays a key role in emission-free mobility. A powertrain based on fuel cells (FC) shows its advantages over battery-electric powertrains when the requirement profile primarily demands high performance over a longer period of time, high flexible availability and short refueling times. In addition, FC achieves higher effi-ciencies than the combustion of hydrogen in a gas engine, meaning that the chemical energy is used more efficiently than with established combustion engines. When using FC technology, numerous companies in Baden-Württemberg can contribute their specific expertise from the traditional automotive construction and supplier business. This includes auxiliary units in the air (cathode) and hydrogen (anode) path, such as the air compressor, the H2 recycling pump, humidifier, cooling system, power electronics, valve and pressure tank technology as well as components of the fuel cell stack itself.
Technical Paper

Harmonic injection method for NVH optimization of permanent magnet synchronous motors considering the structural characteristics of the machine

2024-07-02
2024-01-3015
Noise, vibration and harshness (NVH) is one of the most important performance evaluation aspect of electric motors. Among the different causes of the NVH issues of electrical drives, the high-frequency spatial and temporal harmonics of the electrical drive system is of great importance. To reduce the tonal noise of the electric motors, harmonic injection methods can be applied. However, a lot of the existing related work focuses more on improving the optimization process of the parameter settings of the injected current/flux/voltage, which are usually limited to some specific working conditions. The applicability and effectivity of the algorithm to the whole frequency/speed range are not investigated. In this paper, a multi-domain pipeline of harmonic injection controller design for a permanent magnet synchronous motor (PMSM) is proposed.
Technical Paper

Impact of AdBlue Composition and Water Purity on Particle Number Increase

2024-07-02
2024-01-3012
Previous studies have shown that dosing AdBlue into the exhaust system of diesel engines to reduce nitrogen oxides can lead to an increase in the number of particles (PN). In addition to the influencing factors of exhaust gas temperature, exhaust gas mass flow and dosing quantity, the dosed medium itself (AdBlue) is not considered as a possible influence due to its regulation in ISO standard 22241. However, as the standard specifies limit value ranges for the individual regulated properties and components for newly sold AdBlue, in reality there is still some margin in the composition. This paper investigates the particle number increase due to AdBlue dosing using several CPCs. The increase in PN is determined by measuring the number of particles after DPF and thus directly before dosing as well as tailpipe. Several AdBlue products from different sources and countries are measured and their composition is also analyzed with regard to the limit values regulated in the standard.
Technical Paper

Transient Numerical Analysis of a Dissipative Expansion Chamber Muffler

2024-06-12
2024-01-2935
Expansion chamber mufflers are commonly applied to reduce noise in HVAC. Dissipative materials, such as microperforated plates (MPPs), are often applied to achieve a more broadband mitigation effect. Such mufflers are typically characterized in the frequency domain, assuming time-harmonic excitation. From a computational point of view, transient analyses are more challenging. A transformation of the equivalent fluid model or impedance boundary conditions into the time domain induces convolution integrals. We apply the recently proposed finite element formulation of a time domain equivalent fluid (TDEF) model to simulate the transient response of dissipative acoustic media to arbitrary unsteady excitation. As most time domain approaches, the formulation relies on approximating the frequency-dependent equivalent fluid parameters by a sum of rational functions composed of real-valued or complex-conjugated poles.
Technical Paper

Meta Design: Next Level of Acoustic Insulation in Automotive Industry

2024-06-12
2024-01-2934
Meta material has been known for many years and the physics are well known since decades. But the challenge has always been to put the know how into (mass) production. This was the reason why no meta material has found its way into the automotive industry so far. But now things have changed: meta material became Meta Design and is going into serial production in 2024. Meta Design is a tunable spring mass system with foam acting as the spring and heavy layer as the mass. Meta Design is characterized by cavities in the foam and concentrated masses of the heavy layer as functionalized mass pins. By tuning the size of the cavities and the weight of the mass pins the acoustic performance can be adjusted to the requirements of each individual car line. After preliminary simulations, flat samples were tested in the lab. The next step was launched: the production and testing of a handmade prototype part of a firewall insulation for a Mercedes-Benz A-Class.
Technical Paper

Estimating a Viscous Damping Model for a Vibrating Panel in contact with an Acoustic Trim Enhanced with Particle Dampers.

2024-06-12
2024-01-2917
Dampers (PDs) are passive devices employed in vibration and noise control applications. They consist of a cavity filled with particles that, when fixed to a vibrating structure, dissipate vibrational energy through friction and collisions among the particles. These devices have been extensively documented in the literature and find widespread use in reducing vibrations in structural machinery components subjected to significant dynamic loads during operation. However, their application in reducing vehicle interior sound has received, up to now, relatively little attention. Previous work by the authors has proven the effectiveness of particle dampers in mitigating vibrations in vehicle body panels, achieving a notable reduction in structure-borne noise within the vehicle cabin with an additional weight comparable to or even lower than that of bituminous damping treatments traditionally used for this purpose.
Technical Paper

Comparison Of the Effects of Renewable Fuels on The Emissions of a Small Diesel Engine for Urban Mobility

2024-06-12
2024-37-0019
The current work presents the results of an investigation on the impact of renewable fuels on the combustion and emissions of a turbocharged compression-ignition internal combustion engine. An experimental study was undertaken and the engine settings were not modified to account for the fuel's chemical and physical properties, to analyze the performance of the fuel as a potential drop-in alternative fuel. Three fuels were tested: mineral diesel, a blend of it with waste cooking oil biodiesel and a hydrogenated diesel. The analysis of the emissions at engine exhaust highlights that hydrogenated fuel allows to reduce CO, total hydrocarbon emissions, particulate matter and NOx.
Technical Paper

Frequency-based substructuring for virtual prediction and uncertainty quantification of thin-walled vehicle seat structures

2024-06-12
2024-01-2946
Finite element simulation (FE) makes it possible to analyze the structural dynamic behavior of vehicle seat structures in early design phases to meet Noise-Vibration-Harshness (NVH) requirements. For this purpose, linear simulations are usually used, which neglect many nonlinear mechanical properties of the real structure. These models are trimmed to fit global vibration behavior based on the complex description of contact or jointed definitions. Targeted design is therefore only possible to a limited extent. The aim of this work is to characterize the entire seat structure and its sub-components in order to identify the main contributors using experimental and simulative data. The Lagrange Multiplier Frequency Based Substructuring (LM-FBS) method is used for this purpose. Therefore, the individual subsystems of seat frame, seat backrest and headrest are characterized under different conditions.
Technical Paper

The irrotational intensity: an efficient tool to understand the vibration energy propagation in complex structures using an FE Model.

2024-06-12
2024-01-2942
Although structural intensity was introduced in the 80's, this concept never found practical applications, neither for numerical nor experimental approaches. Quickly, it has been pointed out that only the irrotational component of the intensity offers an easy interpretation of the dynamic behavior of structures by visualizing the vibration energy flow. This is especially valuable at mid and high frequency where the structure response understanding can be challenging. A new methodolodgy is proposed in order to extract this irrotational intensity field from the Finite Element Model of assembled structures such as Bodies In White. This methodology is hybrid in the sense that it employs two distinct solvers: a dynamic solver to compute the structural dynamic response and a thermal solver to address a diffusion equation analogous to the thermal conduction built from the previous dynamic response.
Technical Paper

High-Speed Acoustic Imaging for the Localisation of Impulse-like Sound Emissions from Automotive Components

2024-06-12
2024-01-2959
Design verification and quality control of automotive components require the analysis of the source location of ultra-short sound events, for instance the engaging event of an electromechanical clutch or the clicking noise of the aluminium frame of a passenger car seat under vibration. State-of-the-art acoustic cameras allow for a frame rate of about 100 acoustic images per second. Considering that most of the sound events introduced above can be far less than 10ms, an acoustic image generated at this rate resembles an hard-to-interpret overlay of multiple sources on the structure under test along with reflections from the surrounding test environment. This contribution introduces a novel method for visualizing impulse-like sound emissions from automotive components at 10x the frame rate of traditional acoustic cameras.
Technical Paper

Numerical Study of Application of Gas Foil Bearings in High-Speed Drivelines

2024-06-12
2024-01-2941
Gas bearings are an effective solution to high-speed rotor applications for its contamination free, reduced maintenance and higher reliability. However, low viscosity of gas leads to lower dynamic stiffness and damping characteristics resulting in low load carrying capacity and instability at higher speeds. Gas bearings can be enhanced by adding a foil structure commonly known as gas foil bearings (GFBs), whose dynamic stiffness can be tailored by modifying the geometry and the material properties resulting in better stability and higher load carrying capacity. A detailed study is required to assess the performance of high-speed rotor systems supported on GFBs, therefore in this study a bump type GFB is analyzed for its static and dynamic characteristics. The static characteristics are obtained by solving the non-linear Reynolds equation through an iterative procedure.
Technical Paper

Simulation and test methods on NVH performance of axle system

2024-06-12
2024-01-2950
For electric vehicles, road noise, together with wind noise, is the most important contributor for vehicle interior noise. Road noise is very dependent on the NVH behavior of axle system including wheels and tires. Axle system is part of vehicle platform which should be compatible with different body variants. Therefore, il is important to characterize the NVH performance of an axle system independently of car body structure, so that the design the axle can be optimized at the early stage according to the global requirements of all the related vehicles. The best way to characterize the NVH performance of an axle system is to measure the blocked forces on an appropriate test rig. However, the measurement of blocked forces from an axle system requires very stiff boundary conditions which is difficult to achieve in practice. For axles with rigid mountings, it is nearly impossible to measure the blocked forces on test rig.
Technical Paper

A Comparative Analysis of Thermal Runaway Propagation in Different Modular Lithium-Ion Battery Configuration

2024-05-06
2024-01-2901
Thermal runaway is a critical safety concern in lithium-ion battery systems, emphasising the necessity to comprehend its behaviour in various modular setups. This research compares thermal runaway propagation in different modular configurations of lithium-ion batteries by analysing parameters such as cell spacing and distribution, application of phase change materials (PCMs), and implementing insulating materials. The study at the module level includes experimental validation and employs a comprehensive model considering heat transfer due to electrical performance and thermal runaway phenomena. It aims to identify the most effective modular configuration for mitigating thermal runaway risks and enhancing battery safety. The findings provide valuable insights into the design and operation of modular lithium-ion battery systems, guiding engineers and researchers in implementing best practices to improve safety and performance across various applications.
Technical Paper

Effects of Injection Molding on Linum usitatissimum Fiber Polyvinyl Chloride Composites for Automotive Underbody Shields and Floor Trays

2024-04-29
2024-01-5053
The automotive sector’s growing focus on sustainability has been spurred to investigate the creation of sustainable resources for different parts, emphasizing enhancing efficiency and minimizing environmental harm. For use in automobile flooring trays and underbody shields, this study examines the impact of injection molding on composite materials made of polyvinyl chloride (PVC) and Linum usitatissimum (flax) fibers. As processed organic fiber content was increased, the bending and tensile rigidity initially witnessed an upsurge, peaking at a specific fiber loading. At this optimal loading, the composite exhibited tensile strength, flexural strength, and elastic modulus values of 41.26 MPa, 52.32 MPa, and 2.65 GPa, respectively. Given their deformation resistance and impact absorption attributes, the mechanical properties recorded suggest that such composites can be efficiently utilized for automotive underbody shields and floor trays.
Technical Paper

Exploring the Mechanical Properties of Modified Pistachio Shell Particulate Composites through Experimental Investigation

2024-04-29
2024-01-5052
The present study focuses on the impacts of pistachio shell particles (2–10 wt.%) on the mechanical and microstructures properties of Al–Cu–Mg/pistachio shell particulate composites. To inspect the impact of the pistachio shell powder content with Al–Cu–Mg alloys, the experimentation was carried out with different alloy samples with constant copper (Cu) and magnesium (Mg) content. Parameters such as hardness, tensile strength with yield strength and % elongation, impact energy, and microstructure were analyzed. The outcomes demonstrated that the uniform dissemination of the pistachio shell particles with the microstructure of Al–Cu–Mg/pistachio shell composite particulates is the central point liable for the enhancement of the mechanical properties. Incorporating pistachio shell particles, up to 10 wt.%, is a cost-effective reinforcement in the production of metal matrix composites for various manufacturing applications.
Technical Paper

Proposed Test Method for Brake Pad Lining Robustness in Cold Conditions

2024-04-24
2024-01-5049
With globalization, vehicles are sold across the world throughout different markets and their automotive brake systems must function across a range of environmental conditions. Currently, there is no current standardized test that analyzes brake pads’ robustness against severe cold and humid environmental conditions. The purpose of this proposed test method is to validate brake system performance under severe cold conditions, comparing the results with ambient conditions to evaluate varying lining materials’ functional robustness. The goal of this paper is to aid in setting a standardized process and procedure for the testing of automotive brakes’ environmental robustness. Seven candidate friction materials were selected for analysis. The friction materials are kept confidential. Design of experiment (DOE) techniques were used to create a full-factorial test plan that covered all combinations of parameters.
Technical Paper

Mathematical Model for the Rotation of a Door Including Vehicle Inclination

2024-04-17
2024-01-5045
The analysis presented in this document demonstrates the mathematical model approach for determining the rotation of a door about the hinge axis. Additional results from the model are the torque due to gravity about the axis, opening force, and the door hold open check link force. Vector mechanics, equations of a plane, and parametric equations were utilized to develop this model, which only requires coordinate points as inputs. This model allows for various hinge axis angles and door rotation angles to quickly be analyzed. Vehicle pitch and roll angles may also be input along with door mass to determine the torque about the hinge axis. The vector calculations to determine the moment arm of the door check link and its resulting force are demonstrated for both a standard check link design and an alternate check link design that has the link connected to a slider translated along a shaft.
Technical Paper

Experimental Study on the Mechanical Behavior of Polyamide 6 with Glass Fiber Composites Fabricated through Fused Deposition Modeling Process

2024-04-16
2024-01-5043
In this paper, experimental studies were conducted to examine the mechanical behavior of a polymer composite material called polyamide with glass fiber (PA6-GF), which was fabricated using the three-dimensional (3D) fusion deposition modeling (FDM) technique. FDM is one of the most well-liked low-cost 3D printing techniques for facilitating the adhesion and hot melting of thermoplastic materials. PA6 exhibits an exceptionally significant overall performance in the families of engineering thermoplastic polymer materials. By using twin-screw extrusion, a PA6-GF mixed particles made of PA6 and 20% glass fiber was produced as filament. Based on literature review, the samples have been fabricated for tensile, hardness, and flexural with different layer thickness of 0.08 mm, 0.16 mm, and 0.24 mm, respectively. The composite PA6-GF behavior is characterized through an experimental test employing a variety of test samples made in the x and z axes.
Technical Paper

Design and Evaluation of an in-Plane Shear Test for Fracture Characterization of High Ductility Metals

2024-04-09
2024-01-2858
Fracture characterization of automotive metals under simple shear deformation is critical for the calibration of advanced fracture models employed in forming and crash simulations. In-plane shear fracture tests of high ductility materials have proved challenging since the sample edge fails first in uniaxial tension before the fracture limit in shear is reached at the center of the gage region. Although through-thickness machining is undesirable, it appears required to promote higher strains within the shear zone. The present study seeks to adapt existing in-plane shear geometries, which have otherwise been successful for many automotive materials, to have a local shear zone with a reduced thickness. It is demonstrated that a novel shear zone with a pocket resembling a “peanut” can promote shear fracture within the shear zone while reducing the risk for edge fracture. An emphasis was placed upon machinability and surface quality for the design of the pocket in the shear zone.
Technical Paper

Springback Control through Post-stretching Using Different Hybrid Bead Designs with Tonnage Consideration

2024-04-09
2024-01-2859
Multiple hybrid bead designs were investigated in this study to control the springback on DP780 samples using post-stretching technique. The performance of the four different hybrid bead designs was evaluated by measuring the minimum blank-lock tonnage required to control the springback during a U-channel stamping process. A finite element (FE) model of the U-channel stamping process was developed to simulate the process and predict the minimum blank-lock tonnage required for springback control using each of the hybrid bead designs. It is shown that the developed FE model predicts both the required minimum blank-lock tonnage for post-stretching, and the springback profile, with good accuracy.
X