Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Reduction of Flow-induced Noise in Refrigeration Cycles

2024-07-02
2024-01-2972
In electrified vehicles, auxiliary units can be a dominant source of noise, one of which is the refrigerant scroll compressor. Compared to vehicles with combustion engines, e-vehicles require larger refrigerant compressors, as in addition to the interior, also the battery and the electric motors have to be cooled. Currently, scroll compressors are widely used in the automotive industry, which generate one pressure pulse per revolution due to their discontinuous compression principle. This results in speed-dependent pressure fluctuations as well as higher-harmonic pulsations that arise from reflections. These fluctuations spread through the refrigeration cycle and cause the vibration excitation of refrigerant lines and heat exchangers. The sound transmission path in the air conditioning heat exchanger integrated in the dashboard is particularly critical. Various silencer configurations can be used to dampen these pulsations.
Technical Paper

Low NOx Emissions Performance after 800,000 Miles Aging Using CDA and an Electric Heater

2024-07-02
2024-01-3011
Engine and aftertreatment solutions have been identified to meet the upcoming ultra-low NOX regulations on heavy duty vehicles in the United States and Europe. These standards will require changes to current conventional aftertreatment systems for dealing with low exhaust temperature scenarios while increasing the useful life of the engine and aftertreatment system. Previous studies have shown feasibility of meeting the US EPA and California Air Resource Board (CARB) requirements. This work includes a 15L diesel engine equipped with cylinder deactivation (CDA) and an aftertreatment system that was fully DAAAC aged to 800,000 miles. The aftertreatment system includes an e-heater (electric heater), light-off Selective Catalytic Reduction (LO-SCR) followed by a primary aftertreatment system containing a DPF and SCR.
Technical Paper

Impact of AdBlue Composition and Water Purity on Particle Number Increase

2024-07-02
2024-01-3012
Previous studies have shown that dosing AdBlue into the exhaust system of diesel engines to reduce nitrogen oxides can lead to an increase in the number of particles (PN). In addition to the influencing factors of exhaust gas temperature, exhaust gas mass flow and dosing quantity, the dosed medium itself (AdBlue) is not considered as a possible influence due to its regulation in ISO standard 22241. However, as the standard specifies limit value ranges for the individual regulated properties and components for newly sold AdBlue, in reality there is still some margin in the composition. This paper investigates the particle number increase due to AdBlue dosing using several CPCs. The increase in PN is determined by measuring the number of particles after DPF and thus directly before dosing as well as tailpipe. Several AdBlue products from different sources and countries are measured and their composition is also analyzed with regard to the limit values regulated in the standard.
Technical Paper

Transient Numerical Analysis of a Dissipative Expansion Chamber Muffler

2024-06-12
2024-01-2935
Expansion chamber mufflers are commonly applied to reduce noise in HVAC. Dissipative materials, such as microperforated plates (MPPs), are often applied to achieve a more broadband mitigation effect. Such mufflers are typically characterized in the frequency domain, assuming time-harmonic excitation. From a computational point of view, transient analyses are more challenging. A transformation of the equivalent fluid model or impedance boundary conditions into the time domain induces convolution integrals. We apply the recently proposed finite element formulation of a time domain equivalent fluid (TDEF) model to simulate the transient response of dissipative acoustic media to arbitrary unsteady excitation. As most time domain approaches, the formulation relies on approximating the frequency-dependent equivalent fluid parameters by a sum of rational functions composed of real-valued or complex-conjugated poles.
Technical Paper

Experimental and Simulation Study of Zero Flow Impact on Hybrid Vehicle Emissions

2024-06-12
2024-37-0036
Combustion engines in hybrid vehicles turn on and off several times during a typical passenger car trip. Each engine restart may pose a risk of excessive tailpipe emissions in real-drive conditions if the after-treatment system fails to maintain an adequate temperature level during zero flow. In view of the tightening worldwide tailpipe emissions standards and real-world conformity requirements, it is important to detect and resolve such risks via cost-effective engineering tools relying on accurate 3d analysis of the thermal and chemical behavior of exhaust systems. In this work, we present a series of experiments to examine the impact of zero-flow duration on the exhaust system cooling and subsequent emissions risk. We also present a catalyst model calibrated to predict the 3d thermal and chemical behavior under normal and zero flow conditions. Particular emphasis is given to the phenomena of free convection and thermal radiation dominating the heat transfer at zero flow.
Technical Paper

Effect of Dithering on post-catalyst exhaust gas composition and on short time regeneration of deactivated PdO/Al2O3 catalysts under real engine conditions

2024-06-12
2024-37-0002
Fossil fuels such as natural gas used in engines still play the most important role worldwide despite such measures as the German energy transition which however is also exacerbating climate change as a result of carbon dioxide emissions. One way of reducing carbon dioxide emissions is the choice of energy sources and with it a more favourable chemical composition. Natural gas, for instance, which consist mainly of methane, has the highest hydrogen to carbon ratio of all hydrocarbons, which means that carbon dioxide emissions can be reduced by up to 35% when replacing diesel with natural gas. Although natural gas engines show an overall low CO2 and pollutant emissions level, methane slip due to incomplete combustion occurs, causing methane emissions with a more than 20 higher global warming potential than CO2.
Technical Paper

Acceleration of Fast-SCR Reactions by Eliminating “The Ammonia Blocking Effect”

2024-06-12
2024-37-0001
The recent and future trends of energy for heavy-duty vehicles are considered e-fuel, H2, and electricity, and the Selective Catalytic Reduction (SCR) system is necessary for achieving the goals of zero-emission internal combustion engines that use e-fuel and H2 as a fuel. The Japanese automotive industry uses a Cu-zeolite based SCR catalyst since Vanadium is designated as a specific chemical substance, which the Ministry of Environment prohibits its release into the atmosphere. This study attempted purification rate improvement by controlling the NH3 supply with a mini-reactor and by simulated exhaust gas. Specifically, the experiment was done by examining the effect of the pulse amplitude, frequency, and duty ratio on the purification rate by supplying the NH3 pulse injection to the test piece Cu-chabazite catalyst. Additionally, the results of the reactor experiment were validated by numerical simulation considering the detailed surface reaction processes on the catalyst.
Technical Paper

Optimizing Carbon Monoxide Emission Reduction Using Rice Husk Activated Carbon in Automobile Exhaust Systems

2024-04-29
2024-01-5054
This research effort is to optimize the conditions to minimize carbon monoxide (CO) gas emissions utilizing activated carbon derived from rice husks, an abundant agricultural waste. In the automobile industry, addressing vehicular emissions is crucial due to environmental ramifications and stringent regulatory mandates. This study presents an innovative and potentially cost-effective solution to capture CO emissions, mainly from motorcycles. The eco-friendly nature of using rice husks and the detailed findings on optimal conditions (20 m/s gas flow rate, 0.47 M citric acid concentration, and 30 g mass of activated carbon) make this research invaluable. These conditions achieved a commendable CO adsorption rate of 54.96 ppm over 1250 s. Essentially, the insights from this research could spearhead the development of sustainable automobile exhaust systems.
Technical Paper

Catalytic Converter—An Integrated Approach to Reduce Carbon Dioxide Emission

2024-04-22
2024-01-5047
Vehicle emissions, which are rising alarmingly quickly, are a significant contributor to the air pollution that results. Incomplete combustion, which results in the release of chemicals including carbon monoxide, hydrocarbons, and particulate matter, is the main cause of pollutants from vehicle emissions. However, CO2 contributes more than the aforementioned pollutants combined. Carbon dioxide is the main greenhouse gas that vehicles emit. For every liter of gasoline burned by vehicles, around 2,347 grams of carbon dioxide are released. Therefore, it’s important to reduce vehicle emissions of carbon dioxide. The ability of materials like zeolite and silicon dioxide to absorb CO2 is outstanding. These substances transform CO2 into their own non-polluting carbonate molecules. Zeolite, silicon dioxide, and calcium oxide are combined to form the scrubbing material in a ratio based on their increasing adsorption propensities, along with enough bentonite sand to bind the mixture.
Technical Paper

Oxygenated Fuels as Reductants for Lean NOx Trap Regeneration

2024-04-09
2024-01-2132
The push for environmental protection and sustainability has led to strict emission regulations for automotive manufacturers as evident in EURO VII and 2026 EPA requirements. The challenge lies in maintaining fuel efficiency and simultaneously reducing the carbon footprint while meeting future emission regulations. Alcohol (primarily methanol, ethanol, and butanol) and ether (dimethyl ether) fuels, owing to their comparable energy density to existing fuels, the comparative ease of handling, renewable production, and suitable emission characteristics may present an attractive drop-in replacement, fully or in part as an additive, to the gasoline/diesel fuels, without extensive modifications to the engine geometry. Additionally, lean and diluted combustion are well-researched pathways for efficiency improvement and reduction of engine-out emissions of modern engines.
Technical Paper

3-Dimensional Numerical Simulation and Research on Internal Flow about Different EGR Rates in Venturi Tube of EGR System for a Turbocharged Diesel Engine

2024-04-09
2024-01-2418
Exhaust gas recirculation technology is one of the main methods to reduce engine emissions. The pressure of the intake pipe of turbocharged direct-injection diesel engine is high, and it is difficult to realize EGR technology. The application of Venturi tube can easily solve this problem. In this paper, the working principle of guide-injection Venturi tube is introduced, the EGR system and structure of a turbocharged diesel engine using the guide-injection Venturi tube are studied. According to the working principle of EGR system of turbocharged diesel engine, the model of guide-injection Venturi tube is established, the calculation grid is divided, and it is carried out by using Computational Fluid Dynamics method that the three-dimensional numerical simulation of the internal flow of Venturi tube under different EGR rates injection.
Technical Paper

Kinetic Model Development for Selective Catalytic Converter Integrated Particulate Filters

2024-04-09
2024-01-2631
To meet the stringent NOx and particulate emissions requirements of Euro 6 and China 6 standard, Selective Catalyst Reduction (SCR) catalyst integrated with wall flow particulate filter (SCR-DPF) has been found to be an effective solution for the exhaust aftertreatment systems of diesel engines. NOx is reduced by ammonia generated from urea injection while the filter effectively traps and burns the particulate matter periodically in a process called regeneration. The engine control unit (ECU) effectively manages urea injection quantity, timing and soot burning frequency for the stable functioning of the SCR-DPF without impacting drivability. To control the NOx reduction and particulate regeneration process, the control unit uses lookup tables generated from extensive hardware testing to get the current soot load and NOx slip information of SCR-DPF as a function of main exhaust state variables.
Technical Paper

Thermomechanical Fatigue Behavior of a Cast Austenitic Stainless Steel

2024-04-09
2024-01-2683
Cast austenitic stainless steels, such as 1.4837Nb, are widely used for turbo housing and exhaust manifolds which are subjected to elevated temperatures. Due to assembly constraints, geometry limitation, and particularly high temperatures, thermomechanical fatigue (TMF) issue is commonly seen in the service of those components. Therefore, it is critical to understand the TMF behavior of the cast steels. In the present study, a series of fatigue tests including isothermal low cycle fatigue tests at elevated temperatures up to 1100°C, in-phase and out-of-phase TMF tests in the temperature ranges 100-800°C and 100-1000°C have been conducted. Both creep and oxidation are active in these conditions, and their contributions to the damage of the steel are discussed.
Technical Paper

Electrically Heated Mixer for Near-Zero Urea Deposit

2024-04-09
2024-01-2377
When used with injecting urea-water solution forming ammonia, Selective Catalytic Reduction (SCR) catalyst is a proven technology for greatly reducing tailpipe emission of nitrogen oxides (NOx) from Diesel engines. However, one major shortcoming of an SCR-based system is forming damaging urea deposits (crystals) in low temperature exhaust operations, especially exacerbated during lower exhaust temperature operations or higher injection rates. Deposits reduce SCR efficiency, damage exhaust components, and induce high concentration ammonia slips. We describe here an Electrically Heated Mixer (EHM™) demonstrated on a Diesel engine markedly inhibiting deposit formation in urea SCR systems, both in low (near 200 °C) and higher exhaust temperature operations and for both low and high urea injection rates in various, realistic engine operations. Engine test runs were conducted in long durations, 10 to 20 hours each, for a total of nearly 100 hours.
Technical Paper

Leveraging DOConFilter to Improve Exhaust System Packaging

2024-04-09
2024-01-2131
Diesel Particulate Filters (DPF) made of cordierite are generally used for diesel engine aftertreatment systems in both on-road and commercial off-highway vehicles to meet today’s worldwide emission regulations. PM/PN and NOx emission regulations will become more stringent worldwide, as represented by CARB2027 and Euro7. Technologies that can meet these strict regulations are required. As a result, aftertreatment systems have become more complex with limited space. Recently, off-highway OEMs have been interested in downsizing the aftertreatment system using concepts such as DOConFilter in an effort to reduce the size of the exhaust system. DOConFilter can effectively replace DOC + CSF or DOC + bare DPF systems with a single zone coated particulate filter. DOConFilter systems have an increased amount of coating compared to CSF as higher-filtration filters will become the norm. An undesirable increase in pressure drop is expected by adopting this new technology.
Technical Paper

Cost-Effective D-DPF Design of Aftertreatment System for Non-Road Mobile Machinery China Stage IV

2024-04-09
2024-01-2136
Since Non-Road Mobile Machinery (NRMM) China stage IV legislation has been implemented from 2022, some engines within maximum rated power between 37 to 560 kW are required for gaseous emissions, particulate matter (PM) and particulate number (PN) control, evaluated over testing cycle of Non-Road Transient Cycle (NRTC) and Non-Road Steady Cycle (NRSC). The pollutants from diesel engines, widely used in NRMM applications, can be controlled using aftertreatment systems which are comprised of a diesel oxidation catalyst (DOC) and a diesel particulate filter (DPF), or optionally a selective catalytic reduction (SCR). In this paper, a compact D-DPF design is introduced and discussed on application in harvesters, tractors, and forklifts. Because harvesters have higher exhaust gas temperature than other applications, more passive regeneration behaviors were observed. Subsequently, a compact design of DOC catalyst on DPF (D-DPF) was studied, in other words is to coat DOC catalyst on DPF.
Technical Paper

Improved Coated Gasoline Particulate Filters for China 7 and US Tier 4 Legislations

2024-04-09
2024-01-2387
The impending emission regulations in both China (CN7) and the United States (Tier 4) are set to impose more stringent emission limits on hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx), and particulate matter (PM). CN7 places particular emphasis on reducing particulate number (PN) thresholds, while the forthcoming United States Tier 4 legislation is primarily concerned with reducing the allowable particulate matter (PM) to an assumed limit of 0.5 mg/mile. Given the more stringent constraints on both PN and PM emissions, the development of enhanced aftertreatment solutions becomes imperative to comply with these new regulatory demands. Coated Gasoline Particulate Filters (cGPFs) play a pivotal role as essential components for effective PN and PM abatement.
Technical Paper

Particulate filter performance mapping for in-service conformity

2024-04-09
2024-01-2382
The proposed Euro-7 regulations are expected to build on the significant emissions reductions that have already been achieved using advanced Euro VI compliant after treatment systems (ATS). The introduction of in-service conformity (ISC) requirements during Euro VI paved the way for enabling compliance during real-world driving conditions. The diverse range of applications and resulting operating conditions greatly impact ATS design and the ability of the diesel particulate filter (DPF) to maintain performance under the most challenging boundary conditions including cold starts, partial/complete regenerations, and high passive soot burn operation. The current study attempts to map the particle number (PN) filtration performance of different DPF technologies under a variety of in-use cycles developed based on field-data from heavy duty Class-8 / N3 vehicles.
Technical Paper

Exhaust Slip-Stream Sampling System for Aftertreatment Device Testing

2024-04-09
2024-01-2703
Design, testing, and implementation of new aftertreatment devices under various engine operating conditions is necessary to meet increasingly stringent regulatory mandates. One common aftertreatment device, the catalytic converter, is typically developed at a reduced scale and tested using predefined fluid compositions sourced from bottle gases and can undergo both species and temperature cycling in addition to steady-state testing. However, these bench-top conditions may differ from real-world operation in terms of flow-rates, species composition, and temperatures experienced. Transitioning from small-scale bench-top testing to full-scale engine applications requires larger monoliths that therefore have a significant amount of catalyst slurry to be washcoated, which increases cost and fabrication time.
X