Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A computational study of hydrogen direct injection using a pre-chamber in an opposed-piston engine

2024-07-02
2024-01-3010
Opposed-piston two-stroke engines offer numerous advantages over conventional four-stroke engines, both in terms of fundamental principles and technical aspects. The reduced heat losses and large volume-to-surface area ratio inherently result in a high thermodynamic efficiency. Additionally, the mechanical design is simpler and requires fewer components compared to conventional four-stroke engines. When combining this engine concept with alternative fuels such as hydrogen and pre-chamber technology, a potential route for carbon-neutral powertrains is observed. To ensure safe engine operation using hydrogen as fuel, it is crucial to consider strict safety measures to prevent issues such as knock, pre-ignition, and backfiring. One potential solution to these challenges is the use of direct injection, which has the potential to improve engine efficiency and expand the range of load operation.
Technical Paper

Numerical Investigation of the Effect of Piston Geometry on the Performance of a Ducted Fuel Injection Engine

2024-07-02
2024-01-3024
Ducted Fuel Injection (DFI) engines have emerged as a promising technology in the pursuit of a clean and efficient combustion process. This article aims at elucidating the effect of piston geometry on the engine performance and emissions of a metal DFI engine. Three different types of pistons were investigated and the main piston design features including the piston bowl diameter, piston bowl slope angle, duct angle and the injection nozzle position were examined. To achieve the target, computational fluid dynamics (CFD) simulations were conducted coupled to a reduced chemical kinetics mechanism. Extensive validations were performed against the measured data from a conventional diesel engine. To calibrate the soot model, genetic algorithm and machine learning methods were utilized. The simulation results highlight the pivotal role played by piston bowl diameter and fuel injection angle in controlling soot emissions of a DFI engine.
Technical Paper

The influence of design operating conditions on engine coolant pump absorption in real driving scenarios.

2024-06-12
2024-37-0015
Reducing CO2 emissions in on-the-road transport is important to limit global warming and follow a green transition towards net zero Carbon by 2050. In a long-term scenario, electrification will be the future of transportation. However, in the mid-term, the priority should be given more strongly to other technological alternatives (e.g., decarbonization of the electrical energy and battery recharging time). In the short- to mid-term, the technological and environmental reinforcement of ICEs could participate in the effort of decarbonization, also matching the need to reduce harmful pollutant emissions, mainly during traveling in urban areas. Engine thermal management represents a viable solution considering its potential benefits and limited implementation costs compared to other technologies. A variable flow coolant pump actuated independently from the crankshaft represents the critical component of a thermal management system.
Technical Paper

Development of a Soft-Actor Critic Reinforcement Learning Algorithm for the Energy Management of a Hybrid Electric Vehicle

2024-06-12
2024-37-0011
In recent years, the urgent need to fully exploit the fuel economy potential of the Electrified Vehicles (xEVs) through the optimal design of their Energy Management System (EMS) have led to an increasing interest in Machine Learning (ML) techniques. Among them, Reinforcement Learning (RL) seems to be one of the most promising approaches thanks to its peculiar structure, in which an agent is able to learn the optimal control strategy through the feedback received by a direct interaction with the environment. Therefore, in this study, a new Soft Actor-Critic agent (SAC), which exploits a stochastic policy, was implemented on a digital twin of a state-of-the-art diesel Plug-in Hybrid Electric Vehicle (PHEV) available on the European market. The SAC agent was trained to enhance the fuel economy of the PHEV while guaranteeing its battery charge sustainability.
Technical Paper

Experimental Study of Lignin Fuels for CI Engines

2024-06-12
2024-37-0022
This study explores the feasibility of using a sustainable lignin-based fuel, consisting of 44 % lignin, 50 % ethanol, and 6 % water, in conventional compression ignition (CI) marine engines. Through experimental evaluations on a modified small-bore CI engine, we identified the primary challenges associated with lignin-based fuel, including engine startup and shutdown issues due to solvent evaporation and lignin solidification inside the fuel system, and deposit formation on cylinder walls leading to piston ring seizure. To address these issues, we developed a fuel switching system transitioning from lignin-based fuel to cleaning fuel with 85 vol% of acetone, 10 vol% of water and 5 vol% of ignition improving additive, effectively preventing system clogs.
Technical Paper

Experimental Assessment of Drop-in Hydrotreated Vegetable Oil (HVO) in a Medium-Duty Diesel Engine for Low-emissions Marine Applications

2024-06-12
2024-37-0023
Nowadays, the push for more ecological low-carbon propulsion systems is high in all mobility sectors, including the recreational or light-commercial boating, where propulsion is usually provided by internal combustion engines derived from road applications. In this work, the effects of replacing conventional fossil-derived B7 diesel with Hydrotreated Vegetable Oil (HVO) were experimentally investigated in a modern Medium-Duty Engine, using the advanced biofuel as drop-in and testing according to the ISO 8178 marine standard. The compounded results showed significant benefits in terms of NOx, Soot, mass fuel consumption and WTW CO2 thanks to the inner properties of the aromatic-free, hydrogen-rich renewable fuel, with no impact on the engine power and minimal deterioration of the volumetric fuel economy.
Technical Paper

Guided Port Injection of Hydrogen as An Approach for Reducing Cylinder-To-Cylinder Deviations in Spark-Ignited H2 Engines – A Numerical Investigation

2024-06-12
2024-37-0008
The reduction of anthropogenic greenhouse gas emissions and ever stricter regulations on pollutant emissions in the transport sector require research and development of new, climate-friendly propulsion concepts. The use of renewable hydrogen as a fuel for internal combustion engines promises to provide a good solution especially for commercial vehicles. For optimum efficiency of the combustion process, hydrogen-specific engine components are required, which need to be tested on the test bench and analysed in simulation studies. This paper deals with the simulation-based investigation and optimisation of fuel injection in a 6-cylinder PFI commercial vehicle engine, which has been modified for hydrogen operation starting from a natural gas engine concept.
X