Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Post-Oxidation Phenomena as a Thermal Management Strategy for Automotive After-Treatment Systems: Assessment by Means of 3D-CFD Virtual Development

2024-04-09
2024-01-2629
The target of the upcoming automotive emission regulations is to promote a fast transition to near-zero emission vehicles. As such, the range of ambient and operating conditions tested in the homologation cycles is broadening. In this context, the proposed work aims to thoroughly investigate the potential of post-oxidation phenomena in reducing the light-off time of a conventional three-way catalyst. The study is carried out on a turbocharged four-cylinder gasoline engine by means of experimental and numerical activities. Post oxidation is achieved through the oxidation of unburned fuel in the exhaust line, exploiting a rich combustion and a secondary air injection dedicated strategy. The CFD methodology consists of two different approaches: the former relies on a full-engine mesh, the latter on a detailed analysis of the chemical reactions occurring in the exhaust line.
Technical Paper

Analysis and Optimization of Metallic Based Substrates for After-Treatment System by Means of Full-Scale CFD Simulations and Experiments

2023-04-11
2023-01-0369
The tightening trend of regulations on the levels of admitted pollutant emissions has given a great spur to the research work in the field of combustion and after-treatment devices. Despite the improvements that can be applied to the development of the combustion process, pollutant emissions cannot be reduced to zero; for this reason, the aftertreatment system will become a key component in the path to achieving near-zero emission levels. This study focuses on the numerical analysis and optimization of different metallic substrates, specifically developed for three-way catalyst (TWC) and Diesel oxidation catalyst (DOC) applications, to improve their thermal efficiency by reducing radial thermal losses through the outer mantle. The optimization process relies on computational fluid dynamics (CFD) simulations supported by experimental measurements to validate the numerical models carried out under uncoated conditions, where chemical reactions do not occur.
Technical Paper

A Novel 1D Co-Simulation Framework for the Prediction of Tailpipe Emissions under Different IC Engine Operating Conditions

2019-09-09
2019-24-0147
The accurate prediction of pollutant emissions generated by IC engines is a key aspect to guarantee the respect of the emission regulation legislation. This paper describes the approach followed by the authors to achieve a strict numerical coupling of two different 1D modeling tools in a co-simulation environment, aiming at a reliable calculation of engine-out and tailpipe emissions. The main idea is to allow an accurate 1D simulation of the unsteady flows and wave motion inside the intake and exhaust systems, without resorting to an over-simplified geometrical discretization, and to rely on advanced thermodynamic combustion models and kinetic sub-models for the calculation of cylinder-out emissions. A specific fluid dynamic approach is then used to track the chemical composition along the exhaust duct-system, in order to evaluate the conversion efficiency of after-treatment devices, such as TWC, GPF, DPF, DOC, SCR and so on.
Technical Paper

Comparison of Numerical and System Dynamics Methods for Modeling Wave Propagation in the Intake Manifold of a Single-Cylinder Engine

2013-09-08
2013-24-0139
The automotive industry is striving to adopt model-based engine design and optimization procedures to reduce development time and costs. In this scenario, first-principles gas dynamic models predicting the mass, energy and momentum transport in the engine air path system with high accuracy and low computation effort are extremely important today for performance prediction, optimization and cylinder charge estimation and control. This paper presents a comparative study of two different modeling approaches to predict the one-dimensional unsteady compressible flow in the engine air path system. The first approach is based on a quasi-3D finite volume method, which relies on a geometrical reconstruction of the calculation domain using networks of zero-dimensional elements. The second approach is based on a model-order reduction procedure that projects the nonlinear hyperbolic partial differential equations describing the 1D unsteady flow in engine manifolds onto a predefined basis.
Technical Paper

Integrated 1D-3D Fluid Dynamic Simulation of a Turbocharged Diesel Engine with Complete Intake and Exhaust Systems

2010-04-12
2010-01-1194
This paper describes a detailed analysis of the unsteady flows in the intake and exhaust systems of a modern four-cylinder, turbocharged Diesel engine by means of advanced numerical tools and experimental measurements. In particular, a 1D-3D integrated fluid dynamic model, based on the GASDYN (1D) and Lib-ICE (3D) codes, has been developed and applied for the schematization of the geometrical domain and the prediction of the wave motion in the whole intake and the exhaust systems, including the air cleaner, the intercooler, the after-treatment devices and the silencers. Firstly, a detailed 1D simulation has been carried out to predict the pressure pulses, average pressures and temperatures in several cross-sections of the pipe systems for different speeds and loads, considering the complex geometry of the air filter, the intake manifold, the intercooler and the exhaust manifold.
Technical Paper

Impact of Ultra Low Thermal Inertia Manifolds on Emission Performance

2007-04-16
2007-01-0935
In order to fulfill the more and more stringent emission levels (Euro V, SULEV…), catalytic converter light-off time has to be reduced as much as possible. Consequently, all the parts upstream of the catalytic converter have to be designed in order to minimize the gas heat loss. As a matter of fact, considering the emission performance, all components of the hot end contribute to a better after-treatment. In this study, we focus on the exhaust manifold, that has a major contribution to the thermal mass upstream of the catalyst. The study carried out aims at highlighting the impact of fabricated manifold length and thickness on emissions and engine performance. Several manifold designs, dedicated to different naturally aspirated gasoline engine applications, have been tested on a dynamic engine bench or chassis dyno. Emission results were also supported by temperature measurements.
X