Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Transient Numerical Analysis of a Dissipative Expansion Chamber Muffler

2024-06-12
2024-01-2935
Expansion chamber mufflers are commonly applied to reduce noise in HVAC. Dissipative materials, such as microperforated plates (MPPs), are often applied to achieve a more broadband mitigation effect. Such mufflers are typically characterized in the frequency domain, assuming time-harmonic excitation. From a computational point of view, transient analyses are more challenging. A transformation of the equivalent fluid model or impedance boundary conditions into the time domain induces convolution integrals. We apply the recently proposed finite element formulation of a time domain equivalent fluid (TDEF) model to simulate the transient response of dissipative acoustic media to arbitrary unsteady excitation. As most time domain approaches, the formulation relies on approximating the frequency-dependent equivalent fluid parameters by a sum of rational functions composed of real-valued or complex-conjugated poles.
Technical Paper

Comparison Of the Effects of Renewable Fuels on The Emissions of a Small Diesel Engine for Urban Mobility

2024-06-12
2024-37-0019
The current work presents the results of an investigation on the impact of renewable fuels on the combustion and emissions of a turbocharged compression-ignition internal combustion engine. An experimental study was undertaken and the engine settings were not modified to account for the fuel's chemical and physical properties, to analyze the performance of the fuel as a potential drop-in alternative fuel. Three fuels were tested: mineral diesel, a blend of it with waste cooking oil biodiesel and a hydrogenated diesel. The analysis of the emissions at engine exhaust highlights that hydrogenated fuel allows to reduce CO, total hydrocarbon emissions, particulate matter and NOx.
Technical Paper

Frequency-based substructuring for virtual prediction and uncertainty quantification of thin-walled vehicle seat structures

2024-06-12
2024-01-2946
Finite element simulation (FE) makes it possible to analyze the structural dynamic behavior of vehicle seat structures in early design phases to meet Noise-Vibration-Harshness (NVH) requirements. For this purpose, linear simulations are usually used, which neglect many nonlinear mechanical properties of the real structure. These models are trimmed to fit global vibration behavior based on the complex description of contact or jointed definitions. Targeted design is therefore only possible to a limited extent. The aim of this work is to characterize the entire seat structure and its sub-components in order to identify the main contributors using experimental and simulative data. The Lagrange Multiplier Frequency Based Substructuring (LM-FBS) method is used for this purpose. Therefore, the individual subsystems of seat frame, seat backrest and headrest are characterized under different conditions.
Technical Paper

The irrotational intensity: an efficient tool to understand the vibration energy propagation in complex structures using an FE Model.

2024-06-12
2024-01-2942
Although structural intensity was introduced in the 80's, this concept never found practical applications, neither for numerical nor experimental approaches. Quickly, it has been pointed out that only the irrotational component of the intensity offers an easy interpretation of the dynamic behavior of structures by visualizing the vibration energy flow. This is especially valuable at mid and high frequency where the structure response understanding can be challenging. A new methodolodgy is proposed in order to extract this irrotational intensity field from the Finite Element Model of assembled structures such as Bodies In White. This methodology is hybrid in the sense that it employs two distinct solvers: a dynamic solver to compute the structural dynamic response and a thermal solver to address a diffusion equation analogous to the thermal conduction built from the previous dynamic response.
Technical Paper

Numerical Study of Application of Gas Foil Bearings in High-Speed Drivelines

2024-06-12
2024-01-2941
Gas bearings are an effective solution to high-speed rotor applications for its contamination free, reduced maintenance and higher reliability. However, low viscosity of gas leads to lower dynamic stiffness and damping characteristics resulting in low load carrying capacity and instability at higher speeds. Gas bearings can be enhanced by adding a foil structure commonly known as gas foil bearings (GFBs), whose dynamic stiffness can be tailored by modifying the geometry and the material properties resulting in better stability and higher load carrying capacity. A detailed study is required to assess the performance of high-speed rotor systems supported on GFBs, therefore in this study a bump type GFB is analyzed for its static and dynamic characteristics. The static characteristics are obtained by solving the non-linear Reynolds equation through an iterative procedure.
Technical Paper

Surface Properties of Shot-Peened and Plasma Sprayed Powder-Coated Alpha-Beta Titanium Alloy Implants

2024-05-15
2024-01-5060
The paramount importance of titanium alloy in implant materials stems from its exceptional qualities, yet the optimization of bone integration and mitigation of wear and corrosion necessitate advanced technologies. Consequently, there has been a surge in research efforts focusing on surface modification of biomaterials to meet these challenges. This project is dedicated to enhancing the surface of titanium alloys by employing shot peening and powder coatings of titanium oxide and zinc oxide. Comparative analyses were meticulously conducted on the mechanical and wear properties of both treated and untreated specimens, ensuring uniformity in pressure, distance, and time parameters across all experiments. The outcomes underscore the efficacy of both methods in modifying the surface of the titanium alloy, leading to substantial alterations in surface properties.
Journal Article

Experimental Analysis of Heat Transfer Post Quenching of Medium Carbon Steel

2024-05-08
Abstract Transient temperature analysis is involved in the thermal simulation of the heat treatment process, in which the hot metal temperature changes with respect to time from an initial state to the final state. The critical part of the simulation is to determine the heat transfer coefficient (HTC) between the hot part and the quenching medium or quenchant. In liquid quenching, the heat transfer between the hot metal part and water becomes complicated and it is difficult to determine HTC. In the current experimentation a medium carbon steel EN 9 rod with a diameter of 50 mm and length 100 mm was quenched in water and ethylene glycol mixture with different concentrations. A part model was created; meshed and actual boundary conditions were applied to conduct computational fluid dynamics (CFD) analysis. In order to validate CFD analysis the experimental trials were conducted.
Technical Paper

Statistical Analysis on Wear Behavior of Aluminum Alloy2024–Silicon Carbide–Fly Ash Metal Matrix Composites

2024-05-06
2024-01-5058
Aluminum and its alloys entered a main role in the engineering sectors because of their applicable characteristics for indispensable applications. To enhance requisite belongings for the components, the composition of variant metal/nonmetal with light metal alloys is essential in the manufacturing industries. To enhance the wear resistance with significant strength property of the aluminum alloy 2024, the reinforcement SiC and fly ash (FA) were added with the designation Al2024 + 10% SiC; Al2024 + 5% SiC + 5% FA; and Al2024 + 10% FA via stir-casting technique. The wear resistance property of the composites was tested in pin-on-disc with a dry-sliding wear test procedure. The experiment trials were designed in Box–Behnken design (BBD) by differing the wear test parameters like % of reinforcement, sliding distance (m), and load (N).
Journal Article

Effects of Hard-to-Measure Material Parameters on Clinching Joint Geometries Using Combined Finite Element Method and Machine Learning

2024-05-06
Abstract In this article, we investigated the effects of material parameters on the clinching joint geometry using finite element model (FEM) simulation and machine learning-based metamodels. The FEM described in this study was first developed to reproduce the shape of clinching joints between two AA5052 aluminum alloy sheets. Neural network metamodels were then used to investigate the relation between material parameters and joint geometry as predicted by FEM. By interpreting the data-driven metamodels using explainable machine learning techniques, the effects of the hard-to-measure material parameters during the clinching are studied. It is demonstrated that the friction between the two metal sheets and the flow stress of the material at high (up to 100%) plastic strain are the most influential factors on the interlock and the neck thickness of the clinching joints. However, their dependence on the material parameters is found to be opposite.
Standard

Application of AMS3144 Anodic Electrodeposition Primer

2024-05-01
WIP
G824AB
This standard establishes the recommended requirements for application of AMS3144 anodic electrodeposition primer to aerospace components. Adherence to these requirements will help facilitate satisfactory performance of the applied primer.
Technical Paper

Effects of Injection Molding on Linum usitatissimum Fiber Polyvinyl Chloride Composites for Automotive Underbody Shields and Floor Trays

2024-04-29
2024-01-5053
The automotive sector’s growing focus on sustainability has been spurred to investigate the creation of sustainable resources for different parts, emphasizing enhancing efficiency and minimizing environmental harm. For use in automobile flooring trays and underbody shields, this study examines the impact of injection molding on composite materials made of polyvinyl chloride (PVC) and Linum usitatissimum (flax) fibers. As processed organic fiber content was increased, the bending and tensile rigidity initially witnessed an upsurge, peaking at a specific fiber loading. At this optimal loading, the composite exhibited tensile strength, flexural strength, and elastic modulus values of 41.26 MPa, 52.32 MPa, and 2.65 GPa, respectively. Given their deformation resistance and impact absorption attributes, the mechanical properties recorded suggest that such composites can be efficiently utilized for automotive underbody shields and floor trays.
Technical Paper

Exploring the Mechanical Properties of Modified Pistachio Shell Particulate Composites through Experimental Investigation

2024-04-29
2024-01-5052
The present study focuses on the impacts of pistachio shell particles (2–10 wt.%) on the mechanical and microstructures properties of Al–Cu–Mg/pistachio shell particulate composites. To inspect the impact of the pistachio shell powder content with Al–Cu–Mg alloys, the experimentation was carried out with different alloy samples with constant copper (Cu) and magnesium (Mg) content. Parameters such as hardness, tensile strength with yield strength and % elongation, impact energy, and microstructure were analyzed. The outcomes demonstrated that the uniform dissemination of the pistachio shell particles with the microstructure of Al–Cu–Mg/pistachio shell composite particulates is the central point liable for the enhancement of the mechanical properties. Incorporating pistachio shell particles, up to 10 wt.%, is a cost-effective reinforcement in the production of metal matrix composites for various manufacturing applications.
Journal Article

Se (IV)-Doped Monodisperse Spherical TiO2 Nanoparticles for Adhesively Bonded Joint Reinforcing: Synthesis and Characterization

2024-04-27
Abstract This study focused on the synthesis and characterization of monodisperse spherical TiO2 nanoparticles doped on the surface with Se (IV) in order to increase the mechanical properties of the bonded joint reinforcing. Work will begin with the synthesis of monodisperse quasi-spherical TiO2 nanoparticles with a modal diameter of less than 20 nm, using the sol-gel technique. Se (IV) selenium surface doping changed the specimen’s chemistry and physics. Different initial concentrations of the doping element will be tested. Next, a physicochemical characterization of the different solid systems will be carried out in order to determine the effect of the doping element on the properties of titanium dioxide. Their morphology and size will be studied through transmission electron microscope observations; volume chemical composition by X-ray diffraction analysis, EDX (energy-dispersive X-ray), and XRF (X-ray fluorescence).
Journal Article

Post-Treatment and Hybrid Techniques for Prolonging the Service Life of Fused Deposition Modeling Printed Automotive Parts: A Wear Strength Perspective

2024-04-24
Abstract This study aims to explore the wear characteristics of fused deposition modeling (FDM) printed automotive parts and techniques to improve wear performance. The surface roughness of the parts printed from this widely used additive manufacturing technology requires more attention to reduce surface roughness further and subsequently the mechanical strength of the printed geometries. The main aspect of this study is to examine the effect of process parameters and annealing on the surface roughness and the wear rate of FDM printed acrylonitrile butadiene styrene (ABS) parts to diminish the issue mentioned above. American Society for Testing and Materials (ASTM) G99 specified test specimens were fabricated for the investigations. The parameters considered in this study were nozzle temperature, infill density, printing velocity, and top/bottom pattern.
Journal Article

Failure Analysis of Cryogenically Treated and Gas Nitrided Die Steel in Rotating Bending Fatigue

2024-04-24
Abstract AISI H13 hot work tool steel is commonly used for applications such as hot forging and hot extrusion in mechanical working operations that face thermal and mechanical stress fluctuations, leading to premature failures. Cryogenic treatment was applied for AISI H13 steel to improve the surface hardness and thereby fatigue resistance. This work involves failure analysis of H13 steel specimens subjected to cryogenic treatment and gas nitriding. The specimens were heated to 1020°C, oil quenched followed by double tempering at 550°C for 2 h, and subsequently, deep cryogenically treated at −185°C in the cryochamber. Gas nitriding was carried out for 24 h at 500°C for 200 μm case depth in NH3 surroundings. The specimens were subjected to rotating bending fatigue at constant amplitude loading at room temperature.
Journal Article

Optimization and Performance Evaluation of Additives-Enhanced Fluid in Machining Using Split-Plot Design

2024-04-15
Abstract In recent years, the use of cutting fluids has become crucial in hard metal machining. Traditional non-biodegradable cutting fluids have long dominated various industries for machining. This research presents an innovative approach by suggesting a sustainable alternative: a cutting fluid made from a blend of glycerol (GOL) and distilled water (DW). We conducted a thorough investigation, creating 11 different GOL and DW mixtures in 10% weight increments. These mixtures were rigorously tested through 176 experiments with varying loads and rotational speeds. Using Design-Expert software (DES), we identified the optimal composition to be 70% GOL and 30% DW, with the lowest coefficient of friction (CFN). Building on this promising fluid, we explored further improvements by adding three nanoscale additives: Nano-graphite (GHT), zinc oxide (ZnO), and reduced graphene oxide (RGRO) at different weight percentages (0.06%, 0.08%, 0.1%, and 0.3%).
Technical Paper

Design and Evaluation of an in-Plane Shear Test for Fracture Characterization of High Ductility Metals

2024-04-09
2024-01-2858
Fracture characterization of automotive metals under simple shear deformation is critical for the calibration of advanced fracture models employed in forming and crash simulations. In-plane shear fracture tests of high ductility materials have proved challenging since the sample edge fails first in uniaxial tension before the fracture limit in shear is reached at the center of the gage region. Although through-thickness machining is undesirable, it appears required to promote higher strains within the shear zone. The present study seeks to adapt existing in-plane shear geometries, which have otherwise been successful for many automotive materials, to have a local shear zone with a reduced thickness. It is demonstrated that a novel shear zone with a pocket resembling a “peanut” can promote shear fracture within the shear zone while reducing the risk for edge fracture. An emphasis was placed upon machinability and surface quality for the design of the pocket in the shear zone.
Technical Paper

Springback Control through Post-stretching Using Different Hybrid Bead Designs with Tonnage Consideration

2024-04-09
2024-01-2859
Multiple hybrid bead designs were investigated in this study to control the springback on DP780 samples using post-stretching technique. The performance of the four different hybrid bead designs was evaluated by measuring the minimum blank-lock tonnage required to control the springback during a U-channel stamping process. A finite element (FE) model of the U-channel stamping process was developed to simulate the process and predict the minimum blank-lock tonnage required for springback control using each of the hybrid bead designs. It is shown that the developed FE model predicts both the required minimum blank-lock tonnage for post-stretching, and the springback profile, with good accuracy.
Technical Paper

A Study on Correlation between Micro Structure of Porous Sound Absorbing Materials and Sound Absorption Performance Using CT

2024-04-09
2024-01-2883
One of the five major performances of vehicles, NVH(Noise, Vibration, Harshness), has recently emerged in electric vehicles, again. And, front loading NVH simulation is essential to respond nimbly to automotive industry these days. However, the two components of the simulation, mathematical sound absorption modeling equation, and the acoustic parameters, the input factor, is requiring improvement because of lack of robustness. In this study, we tried to strengthen, standardize, and refine the connectivity between micro (fine structure) and macro (acoustic parameter-related physical properties) characteristics, and improve the consistency with actual NVH performance. As a porous polymer material, polyurethane foam, which is widely used for the interior and exterior of automobiles, is treated as a target material.
X