Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

OnQue Digital Standards System - Standards

2024-05-02
/onque-digital-standards
Now Available from SAE International, SAE OnQue is a revolutionary digital standards solution that optimizes the way automotive and aerospace engineers access standards.
Standard

Off-Road Self-Propelled Work Machines Operator Enclosure Environment Part 1: Terms and Definitions

2024-04-23
CURRENT
J3078/1_202404
SAE J3078 provides test methods and criteria for the evaluation of the operator enclosure environment in earth-moving machinery as defined in ISO 6165. SAE J3078/1 gives the terms and definitions which are used in other parts of SAE J3078. It is applicable to Off-Road Self-Propelled Work Machines as defined in SAE J1116 and tractors and machinery for agriculture and forestry as defined in ANSI/ASAE S390.
Journal Article

Driving Behavior during Left-Turn Maneuvers at Intersections on Left-Hand Traffic Roads

2024-04-17
2023-22-0007
Understanding left-turn vehicle-pedestrian accident mechanisms is critical for developing accident-prevention systems. This study aims to clarify the features of driver behavior focusing on drivers’ gaze, vehicle speed, and time to collision (TTC) during left turns at intersections on left-hand traffic roads. Herein, experiments with a sedan and light-duty truck (< 7.5 tons GVW) are conducted under four conditions: no pedestrian dummy (No-P), near-side pedestrian dummy (Near-P), far-side pedestrian dummy (Far-P) and near-and-far side pedestrian dummies (NF-P). For NF-P, sedans have a significantly shorter gaze time for left-side mirrors compared with light-duty trucks. The light-duty truck’s average speed at the initial line to the intersection (L1) and pedestrian crossing line (L0) is significantly lower than the sedan’s under No-P, Near-P, and NF-P conditions, without any significant difference between any two conditions.
Technical Paper

Simulation of Vehicle Speed Sensor Data for Use in Heavy Vehicle Event Data Recorder Testing

2024-04-09
2024-01-2889
Heavy Vehicle Event Data Recorders (HVEDRs) have the ability to capture important data surrounding an event such as a crash or near crash. Efforts by many researchers to analyze the capabilities and performance of these complex systems can be problematic, in part, due to the challenges of obtaining a heavy truck, the necessary space to safely test systems, the inherent unpredictability in testing, and the costs associated with this research. In this paper, a method for simulating vehicle speed sensor (VSS) inputs to HVEDRs to trigger events is introduced and validated. Full-scale instrumented testing is conducted to capture raw VSS signals during steady state and braking conditions. The recorded steady state VSS signals are injected into the HVEDR along with synthesized signals to evaluate the response of the HVEDR. Brake testing VSS signals are similarly captured and injected into the HVEDR to trigger an event record.
Technical Paper

Enhanced Safety of Heavy-Duty Vehicles on Highways through Automatic Speed Enforcement – A Simulation Study

2024-04-09
2024-01-1964
Highway safety remains a significant concern, especially in mixed traffic scenarios involving heavy-duty vehicles (HDV) and smaller passenger cars. The vulnerability of HDVs following closely behind smaller cars is evident in incidents involving the lead vehicle, potentially leading to catastrophic rear-end collisions. This paper explores how automatic speed enforcement systems, using speed cameras, can mitigate risks for HDVs in such critical situations. While historical crash data consistently demonstrates the reduction of accidents near speed cameras, this paper goes beyond the conventional notion of crash occurrence reduction. Instead, it investigates the profound impact of driver behavior changes within desired travel speed distribution, especially around speed cameras, and their contribution to the safety of trailing vehicles, with a specific focus on heavy-duty trucks in accident-prone scenarios.
Technical Paper

The Effectiveness of Forward Collision Warning Systems in Detecting Real-World Passenger and Nonpassenger Vehicles Relative to a Surrogate Vehicle Target

2024-04-09
2024-01-1978
Automatic emergency braking and forward collision warning (FCW) reduce the incidence of police-reported rear-end crashes by 27% to 50%, but these systems may not be effective for preventing rear-end crashes with nonpassenger vehicles. IIHS and Transport Canada evaluated FCW performance with 12 nonpassenger and 7 passenger vehicle or surrogate vehicle targets in five 2021-2022 model year vehicles. The presence and timing of an FCW was measured as a test vehicle traveling 50, 60, or 70 km/h approached a stationary target ahead in the lane center. Equivalence testing was used to evaluate whether the proportion of trials with an FCW (within ± 0.20) and the average time-to-collision of the warning (within ± 0.23 sec) for each target was meaningfully different from a global vehicle car target (GVT).
Technical Paper

Torque Vectoring for Lane-Changing Control during Steering Failures in Autonomous Commercial Vehicles

2024-04-09
2024-01-2328
Lane changing is an essential action in commercial vehicles to prevent collisions. However, steering system malfunctions significantly escalate the risk of head-on collisions. With the advancement of intelligent chassis control technologies, some autonomous commercial vehicles are now equipped with a four-wheel independent braking system. This article develops a lane-changing control strategy during steering failures using torque vectoring through brake allocation. The boundaries of lane-changing capabilities under different speeds via brake allocation are also investigated, offering valuable insights for driving safety during emergency evasions when the steering system fails. Firstly, a dual-track vehicle dynamics model is established, considering the non-linearity of the tires. A quintic polynomial approach is employed for lane-changing trajectory planning. Secondly, a hierarchical controller is designed.
Technical Paper

Development of a Dual Motor Beam eAxle for Medium Duty Commercial Vehicle Application

2024-04-09
2024-01-2162
Considering the current trend towards the electrification of commercial vehicles, the development of Beam eAxle solutions has become necessary. The utilization of an electric drive unit in heavy-duty solid axle-based commercial vehicles presents unique and demanding challenges. These include the necessity for elevated peak and continuous torque while meeting packaging constraints, structural integrity requirements, and extended service life. One such solution was developed by BorgWarner to address these challenges. This paper offers a comprehensive overview of the design and development process undertaken for this Dual Motor Beam eAxle system. This includes the initial comparison of various eAxle solutions, the specifications of components selected for this design, and the initial results from dyno and vehicle development.
Technical Paper

Research on Intelligent Shift Strategy for Heavy Vehicles Based on Predictive Information

2024-04-09
2024-01-2140
By installing an automated mechanical transmission (AMT) on heavy-duty vehicles and developing a reasonable shift strategy, it can reduce driver fatigue and eliminate technical differences among drivers, improving vehicle performance. However, after detaching from the experience of good drivers, the current shifting strategy is limited to the vehicle state at the current moment, and cannot make predictive judgment of the road environment ahead, and problems such as cyclic shifting will occur due to insufficient power when driving on the ramp. To improve the adaptability of heavy-duty truck shift strategy to dynamic driving environments, this paper first analyzes the shortcomings of existing traditional heavy-duty truck shift strategies on slopes, and develops a comprehensive performance shift strategy incorporating slope factors. Based on this, forward-looking information is introduced to propose a predictive intelligent shift strategy that balances power and economy.
Technical Paper

Analysis of Fluid Evidence on Various Vehicle Components

2024-04-09
2024-01-2467
Determining occupant kinematics in a vehicle crash is essential when understanding injury mechanisms and assessing restraint performance. Identifying contact marks is key to the process. This study was conducted to assess the ability to photodocument the various fluids on different vehicle interior component types and colors with and without the use of ultraviolet (UV) lights. Biological (blood, saliva, sweat and skin), consumable and chemical fluids were applied to vehicle interior components, such as seatbelt webbing, seat and airbag fabrics, roof liner and leather steering wheel. The samples were photodocumented with natural light and UV light (365 nm) exposure immediately after surface application and again 14 days later. The review of the photos indicated that fabric type and color were important factors. The fluids deposits were better visualized on non-porous than porous materials. For example, blood was better documented on curtain airbags than side or driver airbags.
Technical Paper

Quantifying uncertainty in bicycle-computer position measurements

2024-04-09
2024-01-2486
Bicycle computers record and store global position data that can be useful for forensic investigations. The goal of this study was to estimate the absolute error of the latitude and longitude positions recorded by a common bicycle computer over a wide range of riding conditions. We installed three Garmin Edge 530 computers on the handlebars of a bicycle and acquired 9 hours of static data and 96 hours (2214 km) of dynamic data using three different navigation modes (GPS, GPS+GLONASS, and GPS+Galileo satellite systems) and two geographic locations (Vancouver, BC, Canada and Orange County, CA, USA). We used the principle of error propagation to calculate the absolute error of this device from the relative errors between the three pairs of computers. During the static tests, we found 16 m to 108 m of drift during the first 4 min and 1.4 m to 5.0 m of drift during a subsequent 8 min period. During the dynamic tests, we found a 95th percentile absolute error for this device of ±8.04 m.
Technical Paper

Frontal Crash Oriented Robust Optimization of the Electric Bus Body Frame Considering Tolerance Design

2024-04-09
2024-01-2459
For the design optimization of the electric bus body frame orienting frontal crash, considering the uncertainties that may affect the crashworthiness performance, a robust optimization scheme considering tolerance design is proposed, which maps the acceptable variations in objectives and feasibility into the parameter space, allowing for the analysis of robustness. Two contribution analysis methods, namely the entropy weight and TOPSIS method, along with the grey correlation calculations method, are adopted to screen all the design variables. Fifteen shape design variables with a relatively high impact are chosen for design optimization.
Technical Paper

Investigation of Truck Tire Rubber Material Definitions Using Finite Element Analysis

2024-04-09
2024-01-2648
This paper investigates the tire-road interaction for tires equipped with two different solid rubber material definitions within a Finite Element Analysis virtual environment, ESI PAMCRASH. A Mixed Service Drive truck tire sized 315/80R22.5 is designed with two different solid rubber material definitions: a legacy hyperelastic solid Mooney-Rivlin material definition and an Ogden hyperelastic solid material definition. The popular Mooney-Rivlin is a material definition for solid rubber simulation that is not built with element elimination and is not easily applicable to thermal applications. The Ogden hyperelastic material definition for rubber simulations allows for element destruction. Therefore, it is of interest and more suited for designing a tire model with wear and thermal capabilities.
Technical Paper

Inclusion of Tire Forces into Low-Speed Bumper-to-Bumper Crash Reconstruction Simulation Models

2024-04-09
2024-01-2479
Reconstruction of inline crashes between vehicles with a low closing speed, so-called “low speed” crashes, continues to be a class of vehicle collisions that reconstructionists require specific methods to handle. In general, these collisions tend to be difficult to reconstruct due primarily to the lack of, or limited amount of, physical evidence available after the crash. Traditional reconstruction methods such as impulse-momentum (non-residual damage based) and CRASH3 (residual damage based) both are formulated without considering tire forces of the vehicles. These forces can be important in this class of collisions. Additionally, the CRASH3 method depends on the use of stiffness coefficients for the vehicles obtained from high-speed crash tests. The question of the applicability of these (high-speed) stiffness coefficients to collisions producing significantly less deformation than experimental crashes on which they are generated, raises questions of the applicability.
Technical Paper

Comparing Event Data Recorder Data (EDR) in Front/Rear Collisions from the Crash Investigation Sampling System (CISS) Database

2024-04-09
2024-01-2892
The accuracy of collision severity data recorded by event data recorders (EDRs) has been previously measured primarily using barrier impact data from compliance tests and experimental low-speed impacts. There has been less study of the accuracy of EDR-based collision severity data in real-world, vehicle-to-vehicle collisions. Here we used 189 real-world front-into-rear collisions from the Crash Investigating Sampling System (CISS) database where the EDR from both vehicles recorded a severity to examine the accuracy of the EDR-reported speed changes. We calculated relative error between the EDR-reported speed change of each vehicle and a speed change predicted for that same vehicle using the EDR-reported speed change of the other vehicle and conservation of momentum. We also examined the effect of vehicle-type, mass ratio, and pre-impact braking on the relative error in the speed changes.
Technical Paper

Comparison of a Tractor-Semitrailer Rollover Test and HVE Simulations

2024-04-09
2024-01-2487
Building upon prior research, this paper compares computer simulations to a previously conducted rollover crash test of a tractor-semitrailer. The effects of torsional stiffness were elucidated during the correlation of simulations to the rollover test. A commercially available vehicle dynamics and reconstruction software was used for the simulation. Unique aspects of the rollover crash test were modeled in the simulation. A tractor-semitrailer quarter-turn rollover crash test conducted by IMMI was reconstructed using impact and vehicle dynamics models within the simulation software HVE (Human, Vehicle & Environment). The SIMON (SImulation MOdel Non-linear) module and the DyMESH (Dynamic MEchanical SHell) module within HVE were used. During the IMMI test, onboard instrumentation recorded acceleration and roll rate data in six degrees of freedom to characterize both tractor and semitrailer dynamics before and during the rollover event.
Technical Paper

Analysis of the Roll Cage of an Electric All Terrain Vehicle (e-ATV) Using the Finite Element Method

2024-02-23
2023-01-5178
The design and analysis of the roll cage for the ATV car are the subjects of this report. The roll cage is one of the key elements of an ATV car. It is the primary component of an ATV, on which the engine, steering, and gearbox are mounted. The vehicle's sprung mass is beneath the roll cage. The initiation of cracks and the deformation of the vehicle are caused by forces acting on it from various directions. Stresses are consequently produced. FEA of the roll cage is used in this paper in an effort to identify these areas. We have performed torsional analysis as well as front, rear, side impact, and rollover crash analyses. These analyses were all completed using ANSYS Workbench 2020 R1. The design process complies with all guidelines outlined in the SAE rule book of E-Baja.
Standard

Ambulance Patient Compartment Seated Occupant Excursion Zone Evaluation

2024-01-19
CURRENT
J3059_202401
This SAE Information Report describes the testing and reporting procedures that may be used to evaluate and document the excursion of a worker or civilian when transported in a seated and restrained position in the patient compartment of a ground ambulance when exposed to a front, side, or rear impact. Its purpose is to provide seating and occupant restraint manufacturers, ambulance builders, and end-users with testing procedures and documentation methods needed to identify head travel paths in crash loading events. This is a component level test. The seating system is tested in free space to measure maximum head travel paths. The purpose is not to identify stay out zones. Rather, the goal is to provide ambulance manufacturers with the data needed to design safer and functionally sound workstations for Emergency Medical Service workers so that workers are better able to safely perform patient care tasks in a moving ambulance.
X