Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

OnQue Digital Standards System - Standards

2024-04-29
/onque-digital-standards
Now Available from SAE International, SAE OnQue is a revolutionary digital standards solution that optimizes the way automotive and aerospace engineers access standards.
Technical Paper

Development of a Dual Motor Beam eAxle for Medium Duty Commercial Vehicle Application

2024-04-09
2024-01-2162
Considering the current trend towards the electrification of commercial vehicles, the development of Beam eAxle solutions has become necessary. The utilization of an electric drive unit in heavy-duty solid axle-based commercial vehicles presents unique and demanding challenges. These include the necessity for elevated peak and continuous torque while meeting packaging constraints, structural integrity requirements, and extended service life. One such solution was developed by BorgWarner to address these challenges. This paper offers a comprehensive overview of the design and development process undertaken for this Dual Motor Beam eAxle system. This includes the initial comparison of various eAxle solutions, the specifications of components selected for this design, and the initial results from dyno and vehicle development.
Technical Paper

Combination of Dissimilar Overlay Materials for Engine Bearing Life Extension

2024-04-09
2024-01-2066
Nowadays, Bismuth (Bi) is being applied as an overlay material for engine bearings instead of Lead (Pb) which is an environmentally harmful material. Bi overlay has already been a solid performer in some automotive engine sectors due to its superior load carrying capacity and good robustness characteristic which are necessary to maintain its longevity during the lifetime of engines. The replacement is also seen on relatively larger size engines, such as Trucks and Off-highway heavy duty applications. Basically, these applications require higher power output than passenger cars, and the expected component lifecycle becomes longer. Though Bi has similar material characteristic to traditional Pb, it becomes challenging for the material alone to satisfy these requirements. Polymer overlay is known for its superior anti-wear performance and longer lifetime due to less adhesion against a steel counterpart than metallic materials (included Bi).
Technical Paper

Simulation of Crush Behavior and Energy Absorption of Vehicle Li-Ion Battery Module with Prismatic Cells

2024-04-09
2024-01-2492
Lithium-ion batteries serve as the main power source for contemporary electric vehicles. Safeguarding these batteries against damage is paramount, as it can trigger accelerated performance deterioration, potential fire hazards, environmental threats, and more. This study explores damage progression of a commercial vehicle lithium-ion battery module containing prismatic cells under indentation crush loading. We employed computational simulations of mechanical loading tests to investigate this behavior. Physical tests involved subjecting modules to low-speed (0.05 m/s) indentations using a V-shaped stainless-steel wedge, under six unique loading conditions. During the tests, force, and voltage change with wedge displacement were monitored. Utilizing experimental insights, we constructed a finite element model, which included key components of the battery module, such as the prismatic cells, steel frames, and various plastic parts.
Technical Paper

Analyzing Mechanical Behaviour of Aluminium Alloy Composites Reinforced with Ceramics

2024-02-23
2023-01-5110
Aluminium composites are remarkably used in automotive, aerospace, and agricultural sectors because of their lightweight with definable mechanical properties. The stir casting route was followed to fabricate cylindrical samples with base aluminium alloy LM4, LM4/SiC, LM4/Al2O3, and LM4/SiC/Al2O3. The tensile strength, compressive strength, hardness, and micro-structural analysis were performed on samples and Finite element analysis (FEA) was adopted to predict the failure modes of composites. The composites experimental results were found to be in line with the FEA results, however, the LM4/SiC/Al2O3 revealed better results on the mechanical properties when compared with other composite configurations. The mechanical properties improvement like hardness 5%-11%, tensile strength 10.26%-20.67%, compressive strength 15.19% - 32.58% and 71.52 - 82.1% reduction in dimension have been achieved in LM4/SiC/Al2O3 composite comparing to base metal.
Technical Paper

Microstructure, Worn Surface, Wear Assessment and Taguchi’s Approach of Titanium Alloy Hybrid Metal Matrix Composites for Automotive Applications

2024-02-23
2023-01-5103
Lightweight materials are in great demand in the automotive sector to enhance system performance. The automotive sector uses composite materials to strengthen the physical and mechanical qualities of light weight materials and to improve their functionality. Automotive elements such as the body shell, braking system, steering, engine, battery, seat, dashboard, bumper, wheel, door panelling, and gearbox are made of lightweight materials. Lightweight automotive metals are gradually replacing low-carbon steel and cast iron in automobile manufacture. Aluminium alloys, Magnesium alloys, Titanium alloys, advanced high-strength steel, Ultra-high strength steel, carbon fiber-reinforced polymers, and polymer composites are examples of materials used for light weighing or automobile decreased weight. The ever-present demand for fuel-efficient and ecologically friendly transport vehicles has heightened awareness of lowering weight and performance development.
Technical Paper

Multiuso Faltbar Wagen: A Multipurpose Foldable Trolley Designed for Efficiency and Ergonomics

2024-02-23
2023-01-5118
Efficient transportation for carrying heavy loads is a common challenge across various applications, from supermarkets to industrial purposes. Conventional trolleys often fall short when loaded with heavy cargo, resulting in increased exertion and diminished productivity. Moreover, these challenges can adversely affect posture and lumbar spine health, especially for elder people and persons with cervical problems. There is a need for more user-friendly, ergonomic, and space-efficient solutions. This project addresses these challenges through an innovative design that encompasses various aspects of trolley functionality, including the study of comfort, wheel selection, and material considerations, drawing from ergonomic research. Multiple methods are employed to optimize the trolley’s dimensions to improve its overall performance. The trolley’s design features a collapsible basket for the transport of smaller-sized items and a base frame for larger goods and luggage.
Technical Paper

Application of Desirability Approach to Determine Optimal Turning Parameters

2024-02-20
2024-01-5022
Aluminum alloys are employed in agricultural equipment, aerospace sectors, medical instruments, machinery, automobiles, etc. due to their physical and mechanical characteristics. The geometrical shape and size of the parts are modified in turning operation by using a single-point cutting tool. A356 aluminum alloy is widely used in various engineering sectors, hence there is a necessity to produce A-356 components with quality. The inappropriate cutting parameters used in turning operation entail high production costs and reduce tool life. Box–Behnken design (BBD) based on response surface methodology (RSM) was used to design the experiments such that the experiment trials were conducted by varying cutting parameters like N-spindle speed (rpm), f-feed rate (mm/rev), and d-depth of cut (mm). The multi-objective responses, such as surface roughness (SR) and metal removal rate (MRR) were analyzed with the desirability method.
Technical Paper

Geometry, Sizing and Optimization of Honeycomb Structures along with Embedded Metal Inserts on the Floor for Truck-Mounted Container Applications

2024-01-16
2024-26-0186
With the rise of worldwide trends towards light weighting and the move towards electric vehicles, it is now more important than ever for the automotive industry to develop and implement lightweight materials that will result in significant weight reduction and product improvements. A great deal of research has been done on how to best combine and configure honeycomb cores with the right face sheets for Truck-Mounted Container Applications. Honeycomb structures possess the ability to bring about superior structural rigidity when the core parameters are selected and optimized based on the automotive application requirements.
Technical Paper

Retained Newness of Commercial Vehicle Interiors

2024-01-16
2024-26-0188
Commercial vehicle are exposed to harsh environment conditions like dust, mud, wind, rain, extreme sun and winter throughout. Apart from white goods and other conventional loading these vehicles also used in applications which involve Handling of Dirty Loads, Construction Raw materials, Mining Industry etc. which leads to fast deterioration of Interiors. Also, in most cases drivers are not the owners. Hence due to high cost of Cleaning at dealerships and low Product maintenance awareness amongst Commercial Vehicle Users, on Road Washing & Cleaning by riverside is common practice which leads to early deterioration of Interior trims. This paper deals with the retention of newness of soft trim parts such as headliner, wall trims and carpets. Causes of product deterioration and attributes which influence newness like product appeal, NVH, perceived quality, environmental impact, geometry retention over time etc. have been discussed in detail.
Technical Paper

Investigation of Real-World Crash Using an Accident Reconstruction Methodology Employing Crash Test Data

2024-01-16
2024-26-0288
Automotive crash data analysis and reconstruction is vital for ensuring automotive safety. The objective of vehicle crash reconstruction is to determine the vehicle's motion before, during, and after the crash, as well as the impact on occupants in terms of injuries. Simulation approaches, such as PC CrashTM, have been developed to understand pre-crash and post-crash vehicle motion, rather than the crash phase behavior. Over the past few decades, crash phase simulations have utilized vehicle finite element models. While multibody simulation tools are suitable for crash simulations, they often require detailed crash test data to accurately capture vehicle behavior, which is not always readily available. This paper proposes a solution to this limitation by incorporating crash test data from databases, such as NHTSA, Global NCAP, consumer rating reports, and videos, along with a multibody-based approach, to conduct crash phase simulations.
Journal Article

TOC

2023-12-18
Abstract TOC
Magazine

SAE Truck & Off-Highway Engineering: December 2023

2023-12-14
Perkins bets big on smaller engine The new 2600 Series 13-liter engine for off-highway machines will do more with less thanks to variable geometry turbocharging. BorgWarner targets more- sustainable e-motors System optimization and lifecycle analysis are key to taking heavy rare earths out of next-gen motors for commercial EVs. Enhancing digital platforms with CT data analysis TE Connectivity gains critical insights using Volume Graphics software throughout design, simulation and manufacturing.
Technical Paper

Austempered Ductile Iron, Green Design Alternative for Circular Economy

2023-11-10
2023-28-0134
In the current scenario, manufacturing of heavier products generates colossal waste, generates more CO2 emission, and negatively affects the environment. Customers not only pay higher product costs but also higher operational costs. This in turn demands the need for more recycling. Advanced high strength materials are a key solution to applications demanding higher strength, stiffness, durability & wear requirement, whereas low density materials like aluminium and magnesium won’t be a sustainable choice. With more and more battery electric & fuel cell vehicles, “light weighting” is a key priority. Austempered Ductile Iron (ADI) has a great advantage of superior mechanical properties compared to conventional ductile iron, aluminium alloys and even some steel forgings. Typically, ADI is used for high wear applications, whereas this paper will demonstrate the potential of using ADI for Structural applications.
Standard

Guidelines for Liquid Level Indicators

2023-10-06
CURRENT
J48_202310
This SAE Recommended Practice pertains to liquid level determination for any fluid compartment of off-road work machines as defined in SAE J1116 and ISO 6165.
X