Refine Your Search

Search Results

Viewing 1 to 3 of 3
Training / Education

FEA Beyond Basics: Thermal Analysis Web Course RePlay

Anytime
Finite Element Analysis (FEA) is a powerful and well recognized tool used in the analysis of heat transfer problems. However, FEA can only analyze solid bodies and, by necessity thermal analysis with FEA is limited to conductive heat transfer. The other two types of heat transfer: convection and radiation must by approximated by boundary conditions. Modeling all three mechanisms of heat transfer without arbitrary assumption requires a combined use of FEA and Computational Fluid Dynamics (CFD).
Journal Article

Optimization of Pneumatic Network Actuators with Isosceles Trapezoidal Chambers

2019-10-04
Abstract Soft actuators with pneumatic network have innovative potential applications in medical and rehabilitation areas. The performance of this kind of actuators is determined by the design of chambers and the properties of the active extensible layer and the passive inextensible layer. In this article, actuator with isosceles trapezoidal chambers is proposed. Orthogonal experiment design and finite element method are used to optimize the structure of actuators. Results indicate that adding constrain-limiting paper in the passive layer can significantly reduce the bending radius. Position of the paper in the passive layer also affects the bending radius. Actuators with trapezoidal chambers can have a smaller bending radius compared with that with rectangle chambers. The bending radius decreases as the ratio of short base to long base of trapezoid decreases. Increasing the number density of chambers can further reduce the bending radius.
X