Refine Your Search

Topic

Search Results

Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices

2023-05-05
CURRENT
J3105_202305
This document covers the general physical, electrical, functional, testing, and performance requirements for conductive power transfer, primarily for vehicles using a conductive ACD connection capable of transferring DC power. It defines conductive power transfer methods, including the infrastructure electrical contact interface, the vehicle connection interface, the electrical characteristics of the DC supply, and the communication system. It also covers the functional and dimensional requirements for the vehicle connection interface and supply equipment interface. New editions of the documents shall be backwards compatible with the older editions. There are also sub-documents which are identified by a SAE J3105/1, SAE J3105/2, and SAE J3105/3. These will be specific requirements for a specific interface defined in the sub-document.
Standard

Communication for Wireless Power Transfer Between Light-Duty Plug-in Electric Vehicles and Wireless EV Charging Stations

2022-10-09
WIP
J2847/6

SAE J2847/6 establishes minimum requirements for communication between an electric vehicle and an inductive battery charging system for wireless power transfer (WPT). Where relevant, this document notes—but does not formally specify—interactions between the vehicle and vehicle operator.

This document leverages the work of the SAE J2954 Alignment and Controls Sub-Team in the Wireless Power Transfer and Alignment Task Force by extending a JSON-based message set (protocol) originally developed to bench test wireless energy transfer interoperability between unmatched Ground Assembly (GA) and Vehicle Assembly (VA) systems (i.e., components manufactured by different companies). SAE J2847/6 furthers that work by adding messages sufficient to indicate that proper coil alignment has been achieved, initialize the sub-systems for wireless charging, ramp-up to full power, perform active wireless power transfer, and terminate the WPT session.

Standard

Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Terminology

2022-09-30
CURRENT
J1715_202209
This SAE Information Report contains definitions for HEV, PHEV, and EV terminology. It is intended that this document be a resource for those writing other HEV, PHEV, and EV documents, specifications, standards, or recommended practices.
Standard

Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Terminology

2021-05-28
HISTORICAL
J1715_202105
This SAE Information Report contains definitions for HEV, PHEV, and EV terminology. It is intended that this document be a resource for those writing other HEV, PHEV, and EV documents, specifications, standards, or recommended practices.
Standard

Use Cases for Wireless Charging Communication for Plug-in Electric Vehicles

2021-04-09
CURRENT
J2836/6_202104
This SAE Information Report SAE J2836/6 establishes use cases for communication between plug-in electric vehicles and the EVSE for wireless energy transfer as specified in SAE J2954. It addresses the requirements for communications between the on-board charging system and the wireless EV supply equipment (WEVSE) in support of detection of the WEVSE, the charging process, and monitoring of the charging process. Since the communication to the charging infrastructure and the power grid for smart charging will also be communicated by the WEVSE to the EV over the wireless interface, these requirements are also covered. However, the processes and procedures are expected to be identical to those specified for V2G communications specified in SAE J2836/1. Where relevant, the specification notes interactions that may be required between the vehicle and vehicle operator, but does not formally specify them.
Standard

Communication for Plug-in Vehicles as a Distributed Energy Source

2021-03-23
HISTORICAL
J2847/3_202103
This document applies to a plug-in electric vehicle (PEV) which is equipped with an onboard inverter and communicates using IEEE 2030.5-2018. It is a supplement to the SEP2 standard, which supports the use cases defined by SAE J2836/3. It provides guidance for the use of the SEP2 distributed energy resource function set with a PEV. It also provides guidance for the use of the SEP2 flow reservation function set, when used for discharging. It is not intended to be a comprehensive guide to the use of SEP2 in a PEV. Note that in this document, SEP2 is used interchangeably with IEEE 2030.5-2018.
Standard

Hybrid and Electric Vehicle Safety Systems Information Report

2020-11-04
CURRENT
J2990/2_202011
This information report provides an overview of a typical high voltage electric propulsion vehicle (xEV) and the associated on-board safety systems typically employed by OEM’s to protect these high voltage systems. The report aims to improve public confidence in xEV safety systems and dispel public misconceptions about the likelihood of being shocked by the high voltage system, even when the vehicle has been damaged. The report will document select high voltage systems used for xEV’s and describe safety systems employed to prevent exposure to the high voltage systems.
Standard

Guidelines for Electric Vehicle Safety

2020-10-13
CURRENT
J2344_202010
This SAE Information Report identifies and defines the preferred technical guidelines relating to safety for vehicles that contain High Voltage (HV), such as Electric Vehicles (EV), Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV), Fuel Cell Vehicles (FCV) and Plug-In Fuel Cell Vehicles (PFCV) during normal operation and charging, as applicable. Guidelines in this document do not necessarily address maintenance, repair, or assembly safety issues.
Standard

Communication for Wireless Power Transfer Between Light-Duty Plug-in Electric Vehicles and Wireless EV Charging Stations

2020-09-29
CURRENT
J2847/6_202009
SAE J2847/6 establishes minimum requirements for communication between an electric vehicle and an inductive battery charging system for wireless power transfer (WPT). Where relevant, this document notes—but does not formally specify—interactions between the vehicle and vehicle operator. This document leverages the work of the SAE J2954 Alignment and Controls Sub-Team in the Wireless Power Transfer and Alignment Task Force by extending a JSON-based message set (protocol) originally developed to bench test wireless energy transfer interoperability between unmatched Ground Assembly (GA) and Vehicle Assembly (VA) systems (i.e., components manufactured by different companies). SAE J2847/6 furthers that work by adding messages sufficient to indicate that proper coil alignment has been achieved, initialize the sub-systems for wireless charging, ramp-up to full power, perform active wireless power transfer, and terminate the WPT session.
Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices

2020-01-20
HISTORICAL
J3105_202001
This document covers the general physical, electrical, functional, testing, and performance requirements for conductive power transfer, primarily for vehicles using a conductive ACD connection capable of transferring DC power. It defines conductive power transfer methods, including the infrastructure electrical contact interface, the vehicle connection interface, the electrical characteristics of the DC supply, and the communication system. It also covers the functional and dimensional requirements for the vehicle connection interface and supply equipment interface. There are also sub-documents which are identified by a SAE J3105/1, SAE J3105/2, and SAE J3105/3. These will be specific requirements for a specific interface defined in the sub-document. SAE J3105: Main document, including most requirements. ○ SAE J3105/1: Infrastructure-Mounted Cross Rail Connection ○ SAE J3105/2: Vehicle-Mounted Pantograph Connection ○ SAE J3105/3: Enclosed Pin and Socket Connection
Standard

Hybrid and EV First and Second Responder Recommended Practice

2019-07-29
CURRENT
J2990_201907
xEVs involved in incidents present unique hazards associated with the high voltage system (including the battery system). These hazards can be grouped into three categories: chemical, electrical, and thermal. The potential consequences can vary depending on the size, configuration, and specific battery chemistry. Other incidents may arise from secondary events such as garage fires and floods. These types of incidents are also considered in the recommended practice (RP). This RP aims to describe the potential consequences associated with hazards from xEVs and suggest common procedures to help protect emergency responders, tow and/or recovery, storage, repair, and salvage personnel after an incident has occurred with an electrified vehicle. Industry design standards and tools were studied and where appropriate, suggested for responsible organizations to implement. Lithium ion (Li-ion) batteries used for vehicle propulsion power are the assumed battery system of this RP.
Standard

SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler

2017-10-13
HISTORICAL
J1772_201710
This SAE Standard covers the general physical, electrical, functional and performance requirements to facilitate conductive charging of EV/PHEV vehicles in North America. This document defines a common EV/PHEV and supply equipment vehicle conductive charging method including operational requirements and the functional and dimensional requirements for the vehicle inlet and mating connector.
Standard

xEV Labels to Assist First and Second Responders, and Others

2017-03-02
CURRENT
J3108_201703
This recommended practice prescribes clear and consistent labeling methodology for communicating important xEV high voltage safety information. Examples of such information include identifying key high voltage system component locations and high voltage disabling points. These recommendations are based on current industry best practices identified by the responder community. Although this recommended practice is written for xEVs with high voltage systems, these recommendations can be applied to any vehicle type.
Standard

SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler

2016-02-03
HISTORICAL
J1772_201602
This SAE Standard covers the general physical, electrical, functional and performance requirements to facilitate conductive charging of EV/PHEV vehicles in North America. This document defines a common EV/PHEV and supply equipment vehicle conductive charging method including operational requirements and the functional and dimensional requirements for the vehicle inlet and mating connector.
Standard

Hybrid and Electric Vehicle Safety Systems Information Report

2015-01-23
HISTORICAL
J2990/2_201501
This information report provides an overview of a typical high voltage electric propulsion vehicle (xEV) and the associated on-board safety systems typically employed by OEM’s to protect these high voltage systems. The report aims to improve public confidence in xEV safety systems and dispel public misconceptions about the likelihood of being shocked by the high voltage system, even when the vehicle has been damaged. The report will document select high voltage systems used for xEV’s and describe safety systems employed to prevent exposure to the high voltage systems.
Standard

Energy Transfer System for Electric Vehicles - Part 1: Functional Requirements and System Architectures

2014-02-26
CURRENT
J2293/1_201402
SAE J2293 establishes requirements for Electric Vehicles (EV) and the off-board Electric Vehicle Supply Equipment (EVSE) used to transfer electrical energy to an EV from an Electric Utility Power System (Utility) in North America. This document defines, either directly or by reference, all characteristics of the total EV Energy Transfer System (EV-ETS) necessary to insure the functional interoperability of an EV and EVSE of the same physical system architecture. The ETS, regardless of architecture, is responsible for the conversion of AC electrical energy into DC electrical energy that can be used to charge the Storage Battery of an EV, as shown in Figure 1. The different physical ETS system architectures are identified by the form of the energy that is transferred between the EV and the EVSE, as shown in Figure 2. It is possible for an EV and EVSE to support more than one architecture.
Standard

Energy Transfer System for Electric Vehicles - Part 2: Communication Requirements and Network Architecture

2014-02-26
CURRENT
J2293/2_201402
SAE J2293 establishes requirements for Electric Vehicles (EV) and the off-board Electric Vehicle Supply Equipment (EVSE) used to transfer electrical energy to an EV from an Electric Utility Power System (Utility) in North America. This document defines, either directly or by reference, all characteristics of the total EV Energy Transfer System (EV-ETS) necessary to insure the functional interoperability of an EV and EVSE of the same physical system architecture. The ETS, regardless of architecture, is responsible for the conversion of AC electrical energy into DC electrical energy that can be used to charge the Storage Battery of an EV, as shown in Figure 1. The different physical ETS system architectures are identified by the form of the energy that is transferred between the EV and the EVSE, as shown in Figure 2. It is possible for an EV and EVSE to support more than one architecture.
Standard

Hybrid and EV First and Second Responder Recommended Practice

2012-11-19
HISTORICAL
J2990_201211
xEVs involved in incidents present unique hazards associated with the high voltage system (including the battery system). These hazards can be grouped into 3 categories: chemical, electrical, and thermal. The potential consequences can vary depending on the size, configuration and specific battery chemistry. Other incidents may arise from secondary events such as garage fires and floods. These types of incidents are also considered in the recommended practice (RP). This RP aims to describe the potential consequences associated with hazards from xEVs and suggest common procedures to help protect emergency responders, tow and/or recovery, storage, repair, and salvage personnel after an incident has occurred with an electrified vehicle. Industry design standards and tools were studied and where appropriate, suggested for responsible organizations to implement.
X