Refine Your Search

Search Results

Viewing 1 to 8 of 8
Standard

A Guide to Aircraft Turbine Engine Vibration Monitoring Systems

2015-12-20
CURRENT
ARP1839
This Aerospace Recommended Practice (ARP) is a general overview of typical airborne engine vibration monitoring (EVM) systems applicable to fixed or rotary wing aircraft applications, with an emphasis on system design considerations. It describes EVM systems currently in use and future trends in EVM development. The broader scope of Health and Usage Monitoring Systems, (HUMS) is covered in SAE documents AS5391, AS5392, AS5393, AS5394, AS5395, AIR4174. This ARP also contains the essential elements of AS8054 which remain relevant and which have not been incorporated into Original Equipment Manufacturers (OEM) specifications.
Standard

A Guide to Aircraft Turbine Engine Vibration Monitoring Systems

2014-05-01
HISTORICAL
AIR1839C
This Aerospace Information Report (AIR) is a general overview of typical airborne engine vibration monitoring (EVM) systems applicable to fixed or rotary wing aircraft applications, with an emphasis on system design considerations. It describes EVM systems currently in use and future trends in EVM development. The broader scope of Health and Usage Monitoring Systems, (HUMS ) is covered in SAE documents AS5391, AS5392, AS5393, AS5394, AS5395, AIR4174.
Standard

Guide to Temperature Monitoring in Aircraft Gas Turbine Engines

2014-05-01
HISTORICAL
AIR1900A
This SAE Aerospace Information Report (AIR) provides an overview of temperature measurement for engine monitoring systems in various areas of aircraft gas turbine engines while focusing on current usage and methods, systems, selection criteria, and types of hardware. This document emphasizes temperature monitoring for diagnostics and condition monitoring purposes.
Standard

A Guide to the Development of a Ground Station for Engine Condition Monitoring

2012-10-08
HISTORICAL
AIR4175A
An effective GSS is vital to the successful implementation of an EMS and is a fundamental part of the total monitoring system design, including asset management. Unlike the on-board part of the EMS which principally uses real time data to indicate when engine maintenance is required, a GSS can offer much greater processing power to comprehensively analyze and manipulate EMS data for both maintenance and logistics purposes. This document reviews the main EMS functions and discusses the operating requirements used to determine the basis design of a GSS, including the interfaces with other maintenance or logistic systems. A brief discussion is also included on some of the more recent advances in GSS technology that have been specifically developed to provide more effective diagnostic capabilities for gas turbine engines.
Standard

Cost Versus Benefits of Engine Monitoring Systems

2005-10-28
HISTORICAL
AIR4176
The purpose of this SAE Aerospace Information Report (AIR) is to provide information that would be useful to potential users/operators and decision makers for evaluating and quantifying the benefits of an Engine Monitoring Systems (EMS) versus its cost of implementation. This document presents excerpts from reports developed to analyze “actual aircraft cost/benefits results”. These are presented as follows: a First, to outline the benefits and cost elements pertaining to EMS that may be used in performing a cost versus benefits analysis. b Second, to present considerations for use in conducting the analysis. c Third, to provide examples of analyses and results as they relate to the user/operator and decision-maker community. The document encompasses helicopters and fixed wing aircraft and distinguishes between civilian and military considerations.
Standard

A Guide to Aircraft Turbine Engine Vibration Monitoring Systems

2001-07-01
HISTORICAL
AIR1839B
This SAE Aerospace Information Report (AIR) is a general overview of typical airborne engine vibration monitoring (EVM) systems with an emphasis on system design considerations. It describes EVM systems currently in use and future trends in EVM development.
Standard

A GUIDE TO AIRCRAFT TURBINE ENGINE VIBRATION MONITORING SYSTEMS

1992-03-10
HISTORICAL
AIR1839A
This Aerospace Information Report (AIR) is a general overview of typical airborne vibration monitoring (AVM) systems with an emphasis on system hardware design considerations. It describes AVM systems currently in use. The purpose of this AIR is to provide information and guidance for the selection, installation, and use of AVM systems and their elements. This AIR is not intended as a legal document but only as a technical guide.
X