Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

CO2 Emission Benefits of Homogeneous Charge Compression Ignition and Direct Injection Compression Ignition Combustion

2021-09-22
2021-26-0423
The paper aims to provide an assessment of the Homogeneous Charge Compression Ignition (HCCI) combustion, compared to a well-established alternative such as Direct Injection Compression Ignition (DICI) combustion, under the criteria of CO2 emission reduction potential. The assessment is performed by reviewing the relevant literature and analyzing the commercial products available on the market that are featuring these two technologies. DICI engines have demonstrated in the real world the ability to deliver top fuel conversion efficiencies of about 50%, and fuel conversion efficiencies largely above 40% over most of the load and speed range. Research-only HCCI engines have delivered fuel efficiencies well below 40% in the very few carefully selected map points where they working during carefully performed laboratory experiments.
Book

Advances in Turbocharged Racing Engines

2019-03-07
Racing continues to provide the preeminent directive for advancing powertrain development for automakers worldwide. Formula 1, World Rally, and World Endurance Championship all provide engineering teams the most demanding and rigorous testing opportunities for the latest engine and technology designs. Turbocharging has seen significant growth in the passenger car market after years of development on racing circuits. Advances in Turbocharged Racing Engines combines ten essential SAE technical papers with introductory content from the editor on turbocharged engine use in F1, WRC, and WEC-recognizing how forced induction in racing has impacted production vehicle powertrains.
Book

Prototype Powertrain in Motorsport Endurance Racing

2018-08-01
Racing continues to be the singular, preeminent source of powertrain development for automakers worldwide. Engineering teams rely on motorsports for the latest prototype testing and research. Endurance racing provides the harshest and most illuminating stage for system design validation of any motorsport competition. While advancements throughout the 20th Century brought about dramatic increases in engine power output, the latest developments from endurance racing may be more impactful for fuel efficiency improvements. Hybrid powertrains are a critical area of research for automakers and are being tested on the toughest of scales. Prototype Powertrain in Motorsport Endurance Racing brings together ten vital SAE technical papers and SAE Automotive Engineering magazine articles surrounding the advancements of hybrid powertrains in motorsports.
Technical Paper

Analysis of the Regenerative Braking Efficiency of a Latest Electric Vehicle

2013-11-27
2013-01-2872
Kinetic energy recovery systems (KERS) placed on one axle coupled to a traditional thermal engine on the other axle is possibly the best solution presently available to dramatically improve the fuel economy while providing better performances within strict budget constraints. Different KERS may be built purely electric, purely mechanic, or hybrid mechanic/electric differing for round trip efficiency, packaging, weights, costs and requirement of further research and development. The paper presents an experimental analysis of the energy flow to and from the battery of a latest Nissan Leaf covering the Urban Dynamometer Driving Schedule (UDDS). This analysis provides a state-of-the-art benchmark of the propulsion and regenerative braking efficiencies of electric vehicles with off-the-shelve technologies.
Technical Paper

Hydraulic Hybrid Heavy Duty Vehicles - Challenges and Opportunities

2012-09-24
2012-01-2036
The consumption of fossil fuels is one of the largest problems facing humankind. One of the heaviest users of non-renewable energy sources is the transport industry. Tightening worldwide legislation aims to place restrictions on the transport industry to reduce its use of fossil fuels and reduce the levels of pollution being released to the atmosphere. Although several different alternatives to the vehicles only powered by internal combustion engine (ICEs) have been investigated, none have as yet become equally widespread. Alternative research into development of hybrid vehicles was specifically concerned with electric hybrids especially for passenger vehicles. Currently there is a resurgence of interest in the Hybrid Hydraulic Vehicle (HHV) in application to commercial and to a lesser degree to passenger vehicles. This paper gives an overview of hydraulic hybrid technology.
Technical Paper

100% LPG Long Haul Truck Conversion - Economy and Environmental Benefits

2012-09-24
2012-01-1983
Advanced Vehicle Technologies (AVT), a Ballarat Australia based company, has developed the World's first diesel to 100% LPG conversion for heavy haul trucks. There is no diesel required or utilized on the trucks. The engine is converted with minimal changes into a spark ignition engine with equivalent power and torque of the diesel. The patented technology is now deployed in 2 Mercedes Actros trucks. The power output in engine dynamometer testing exceeds that of the diesel (in excess of 370 kW power and 2700 Nm torque). In on-road application the power curve is matched to the diesel specifications to avoid potential downstream power-train stress. Testing at the Department of Transport Energy & Infrastructure, Regency Park, SA have shown the Euro 3 truck converted to LPG is between Euro 4 and Euro 5 NOx levels, CO2 levels 10% better than diesel on DT80 test and about even with diesel on CUEDC tests.
Technical Paper

KERS Braking for 2014 F1 Cars

2012-09-17
2012-01-1802
Small, high power density turbocharged engines coupled to kinetic energy recovery systems are one of the key areas of development for both passenger and racing cars. In passenger cars, the KERS may reduce the amount of thermal energy needed to reaccelerate the car following a deceleration recovering part of the braking energy. This translates in a first, significant fuel energy saving. Also considering the KERS torque boost increasing the total torque available to accelerate the car, large engines working at very low brake mean effective pressures and efficiencies over driving cycles may also be replaced by small higher power density engines working at much higher brake mean effective pressures and therefore much higher part load efficiencies. In racing cars, the coupling of small engines to KERS may improve the perception of racing being more environmentally friendly. The KERS is more a performance boost than a fuel saving device, permitting about same lap times with smaller engines.
Technical Paper

Optimizing the Design of the Air Flow Orifice or Restrictor for Race Car Applications

2007-08-05
2007-01-3553
Several race car competitions seek to limit engine power through a rule that requires all of the engine combustion air passes through a hole of prescribed diameter. As the approach and departure wall shapes to this hole, usually termed orifice or restrictor are not prescribed, there is opportunity for innovation in these shapes to obtain maximum flow and therefore power. This paper reports measurements made for a range of restrictor types including venturis with conical inlets and outlets of various angles and the application of slotted throats of the ‘Dall tube’ type. Although normal venturis have been optimized as subsonic flow measuring devices with minimum pressure losses, at the limit the flow in the throat is sonic and the down stream shocks associated with flow transition from sub-sonic to sonic are best handled with sudden angular changes and the boundary layer minimized by the corner slots between the convergent and divergent cones.
X