Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Definition and Application of a Target Cascading Process on a Fully Trimmed Body, from Vehicle Objectives to Component Objectives

2024-06-12
2024-01-2916
Finite element (FE) based simulations for fully trimmed bodies are a key tool in the automotive industry to predict and understand the Noise, Vibration and Harshness (NVH) behavior of a complete car. While structural and acoustic transfer functions are nowadays straight-forward to obtain from such models, the comprehensive understanding of the intrinsic behavior of the complete car is more complex to achieve, in particular when it comes to the contribution of each sub-part to the global response. This paper proposes a complete target cascading process, which first assesses which sub-part of the car is the most contributing to the interior noise, then decomposes the total structure-borne acoustic transfer function into several intermediate transfer functions, allowing to better understand the effect of local design changes.
Technical Paper

Optimization of Vehicle Damping Sheets Position Based on Energy Calculation

2020-09-30
2020-01-1528
As a common means for reducing vibration and noise for automobiles, damping material is usually employed in the vehicle body, typically on the floor, the dashboard and the top roof. With the growing demand of fuel economy, light weighting, as well as NVH comfort, the optimization of the damping pads has become a topic of increasing importance. In numerical simulation, the traditional methods generally make use of the modal strain energy of the metal sheet as the main indicator for making layout choice for the damping pads. These methods are generally not able to take into account the specific location and amplitude of the structural-borne excitations, e.g. road noise or engine excitation. Therefore the optimization is not performed according the vehicle’s real working condition. Furthermore, the traditional methods do not depend on the accurate properties of the damping material. In this paper, a novel optimization method based on energy analysis is presented.
Technical Paper

Extensive Correlation Study of Acoustic Trim Packages in Trimmed Body Modeling of an Automotive Vehicle

2019-06-05
2019-01-1511
In the automotive sector, the structure borne noise generated by the engine and road-tire interactions is a major source of noise inside the passenger cavity. In order to increase the global acoustic comfort, predictive simulation models must be available in the design phase. The acoustic trims have a major impact on the noise level inside the car cavity. Although several publications for this kind of simulations can be found, an extensive correlation study with measurement is needed, in order to validate the modeling approaches. In this article, a detailed correlation study for a complete car is performed. The acoustic trim package of the measured car includes all acoustic trims, such as carpet, headliner, seats and firewall covers. The simulation methodology relies on the influence of the acoustic trim package on the car structure and acoustic cavities. The challenge lies in the definition of an efficient and accurate framework for acoustic trimmed bodies.
Technical Paper

Numerical Simulation of Noise Transmission from A-pillar Induced Turbulence into a Simplified Car Cabin

2015-06-15
2015-01-2322
At high cruising speed, the car A-pillars generate turbulent air flow around the vehicle. The resulting aerodynamic pressure applied on the windows significantly contributes to the total cabin noise. In order to predict this particular noise contribution, the physic of both the flow and the cabin needs to be accurately modeled. This paper presents an efficient methodology to predict the turbulent noise transmission through the car windows. The method relies on a two-step approach: the first step is the computation of the exterior aero-dynamic field using an unsteady CFD solver (PowerFLOW); the second step consists in the computation of the acoustic propagation inside the cabin using a finite element vibro-acoustic solver (ACTRAN). The simplified car cabin of Hyundai Motor Company, studied in this paper, involves aluminum skin, windows, sealant, inner air cavity and acoustic treatment inside the passenger compartment (porous material, damping layer).
Journal Article

Acoustic Simulation of Vehicle Exhaust System using High Order Transfer Matrix Method Coupled with Finite Element Method

2014-11-11
2014-32-0119
This paper addresses the numerical simulation of motorcycle exhaust system noise using a transfer matrix method (TMM) supporting high order analytical acoustic modes representation combined with finite element method (FEM) included in the Actran software, R15. In the state-of-the-art of hybrid TMM/FEM approach the main assumption consists in a 1D plane wave acoustic propagation in the components connections which is intrinsically limiting the maximum frequency of the analysis. In motorcycle exhaust systems this limitation is even stronger because typical geometries exhibit strong curvatures and bends causing the scattering of the acoustic wave into higher order modes. Therefore, results might be erroneous even at frequencies at which only the plane wave is expected to be propagating. The improved transfer matrix method presented in this paper overcomes this limitation allowing to increase the range of applicability of this method.
Technical Paper

Vibro-Acoustic Simulation of Intake Air Filter Using a Hybrid Modal Physical Coupling

2012-06-13
2012-01-1549
To assess the acoustic performance of modern automotive air filters, both the air-borne engine noise propagating through the interior air of the system (known as “pipe noise”) and the structure-borne noise radiated by the shell (“shell noise”) should be evaluated. In this paper, these different propagation paths are modeled using the finite element solver Actran on industrial test cases set-up by SOGEFI Air and Cooling Systems. The test-case is designed in such a way that the different propagation paths are assessed separately. First the engine acoustic pulsation that is transmitted through the filter's structure is considered. Second, the noise radiated by the shell excited by mechanical forces at the support location of the filter is evaluated. Finally, the acoustic transmission loss of the filter is predicted. The ingredients of the finite/infinite element models are reviewed in details in the paper.
X