Refine Your Search

Topic

Author

Search Results

Technical Paper

Implementation of Adaptive Equivalent Consumption Minimization Strategy

2024-04-09
2024-01-2772
Electrification of vehicles is an important step towards making mobility more sustainable and carbon-free. Hybrid electric vehicles use an electric machine with an on-board energy storage system, in some form to provide additional torque and reduce the power requirement from the internal combustion engine. It is important to control and optimize this power source split between the engine and electric machine to make the best use of the system. This paper showcases an implementation of the Adaptive Equivalent Consumption Minimization Strategy (A-ECMS) with minimization in real-time in the dSPACE MicroAutobox II as the Hybrid Supervisory Controller (HSC). While the concept of A-ECMS has been well established for many years, there are no published papers that present results obtained in a production vehicle suitably modified from conventional to hybrid electric propulsion including real world testing as well as testing on regulatory cycles.
Journal Article

Battery Selection and Optimal Energy Management for a Range-Extended Electric Delivery Truck

2022-09-16
2022-24-0009
Delivery trucks and vans represent a growing transportation segment which reflects the shift of consumers towards on-line shopping and on-demand delivery. Therefore, electrification of this class of vehicles is going to play a major role in the decarbonization of the transportation sector and in the transition to a sustainable mobility system. Hybrid electric vehicles can represent a medium-term solution and have gained an increasing share of the market in recent years. These vehicles include two power sources, typically an internal combustion engine and a battery, which gives more degrees of freedom when controlling the powertrain to satisfy the power request at the wheels. Components sizing and powertrain energy management are strongly coupled and can make a substantial impact on the final energy consumption of a hybrid vehicle.
Technical Paper

Optimal Energy Management Strategy for Energy Efficiency Improvement and Pollutant Emissions Mitigation in a Range-Extender Electric Vehicle

2021-09-05
2021-24-0103
The definition of the energy management strategy for a hybrid electric vehicle is a key element to ensure maximum energy efficiency. The ability to optimally manage the on-board energy sources, i.e., fuel and electricity, greatly affects the final energy consumption of hybrid powertrains. In the case of plug-in series-hybrid architectures, such as Range-Extender Electric Vehicles (REEVs), fuel efficiency optimization alone can result in a stressful operation of the range-extender engine with an excessively high number of start/stops. Nonetheless, reducing the number of start/stops can lead to long periods in which the engine is off, resulting in the after-treatment system temperature to drop and higher emissions to be produced at the next engine start.
Technical Paper

Structural Analysis Based Sensor Placement for Diagnosis of Clutch Faults in Automatic Transmissions

2018-04-03
2018-01-1357
This paper describes a systematic approach to identify the best sensor combination by performing sensor placement analysis to detect and isolate clutch stuck-off faults in Automatic Transmissions (AT) based on structural analysis. When an engaged clutch in the AT loses pressure during operation, it is classified as a clutch stuck-off fault. AT can enter in neutral state because of these faults; causing loss of power at wheels. Identifying the sensors to detect and isolate these faults is important in the early stage of the AT development. A universal approach to develop a structural model of an AT is presented based on the kinematic relationships of the planetary gear set elements. Sensor placement analysis is then performed to determine the sensor locations to detect and isolate the clutch stuck-off faults using speed sensors and clutch pressure sensors. The proposed approach is then applied to a 10-Speed AT to demonstrate its effectiveness.
Technical Paper

Motor Resolver Fault Diagnosis for AWD EV based on Structural Analysis

2018-04-03
2018-01-1354
Electric vehicles (EVs) and hybrid electric vehicles (HEVs) are getting more attention in the automotive industry with the technology improvement and increasing focus on fuel economy. For EVs and HEVs, especially all-wheel drive (AWD) EVs with two electric motors powering front and rear axles separately, an accurate motor speed measurement through resolver is significant for vehicle performance and drivability requirement, subject to resolver faults including amplitude imbalance, quadrature imperfection and reference phase shift. This paper proposes a diagnostic scheme for the specific type of resolver fault, amplitude imbalance, in AWD EVs. Based on structural analysis, the vehicle structure is analyzed considering the vehicle architecture and the sensor setup. Different vehicle drive scenarios are studied for designing diagnostic decision logic. The residuals are designed in accordance with the results of structural analysis and the diagnostic decision logic.
Technical Paper

Plant Modeling and Software Verification for a Plug-in Hybrid Electric Vehicle in the EcoCAR 2 Competition

2015-04-14
2015-01-1229
The EcoCAR 2: Plugging into the Future team at The Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 44 miles of all-electric range. The vehicle features an 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes. This is made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 50 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This paper details three years of modeling and simulation development for the OSU EcoCAR 2 vehicle. Included in this paper are the processes for developing simulation platform and model requirements, plant model and soft ECU development, test development and validation, automated regression testing, and controls and calibration optimization.
Journal Article

Adaptive Energy Management Strategy Calibration in PHEVs Based on a Sensitivity Study

2013-09-08
2013-24-0074
This paper presents a sensitivity analysis-based study aimed at robustly calibrating the parameters of an adaptive energy management strategy designed for a Plugin Hybrid Electric Vehicle (PHEV). The supervisory control is developed from the Pontryagin's Minimum Principle (PMP) approach and applied to a model of a GM Chevrolet Volt vehicle. The proposed controller aims at minimizing the fuel consumption of the vehicle over a given driving mission, by achieving a blended discharge strategy over the entire cycle. The calibration study is conducted over a wide set of driving conditions and it generates a look-up table and two constant values for the three controller parameters to be used in the in-vehicle implementation. Finally, the calibrated adaptive control strategy is validated against real driving cycles showing the effectiveness of the calibration approach.
Journal Article

Design of a Parallel-Series PHEV for the EcoCAR 2 Competition

2012-09-10
2012-01-1762
The EcoCAR 2: Plugging into the Future team at the Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 50 miles of all-electric range. The vehicle features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 75 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report details the rigorous design process followed by the Ohio State team during Year 1 of the competition. The design process includes identifying the team customer's needs and wants, selecting an overall vehicle architecture and completing detailed design work on the mechanical, electrical and control systems. This effort was made possible through support from the U.S.
Journal Article

An Iterative Markov Chain Approach for Generating Vehicle Driving Cycles

2011-04-12
2011-01-0880
For simulation and analysis of vehicles there is a need to have a means of generating drive cycles which have properties similar to real world driving. A method is presented which uses measured vehicle speed from a number of vehicles to generate a Markov chain model. This Markov chain model is capable of generating drive cycles which match the statistics of the original data set. This Markov model is then used in an iterative fashion to generate drive cycles which match constraints imposed by the user. These constraints could include factors such number of stops, total distance, average speed, or maximum speed. In this paper, systematic analysis was done for a PHEV fleet which consists of 9 PHEVs that were instrumented using data loggers for a period of approximately two years. Statistical analysis using principal component analysis and a clustering approach was carried out for the real world velocity profiles.
Journal Article

Design and Validation of a Control-Oriented Model of a Diesel Engine with Two-Stage Turbocharger

2009-09-13
2009-24-0122
Two-stage turbochargers are a recent solution to improve engine performance. The large flexibility of these systems, able to operate in different modes, can determine a reduction of the turbo-lag phenomenon and improve the engine tuning. However, the presence of two turbochargers that can be in part operated independently requires effort in terms of analysis and optimization to maximize the benefits of this technology. In addition, the design and calibration of the control system is particularly complex. The transitioning between single stage and two-stage operations poses further control issues. In this scenario a model-based approach could be a convenient and effective solution to investigate optimization, calibration and control issues, provided the developed models retain high accuracy, limited calibration effort and the ability to run in real time.
Journal Article

Energy, Economical and Environmental Analysis of Plug-In Hybrids Electric Vehicles Based on Common Driving Cycles

2009-09-13
2009-24-0062
The objective draw by this project is to develop tools for Plug-in Hybrid Electric Vehicle (PHEV) design, energy analysis and energy management, with the aim of analyzing the effect of design, driving cycles, charging frequency and energy management on performance, fuel economy, range and battery life. A Chevrolet Equinox fueled by bio diesel B20 has been hybridized at the Center for Automotive Research (CAR), at The Ohio State University. The vehicle model has been developed in Matlab/Simulink environment, and validated based on laboratory and test. The PHEV battery pack has been modeled starting from Li-Ion batteries experimental data and then implemented into the simulator. In order to simulate “real world” scenarios, custom driving cycles/typical days were identified starting from average driving statistics and well-known cycles.
Technical Paper

Comparative study of different control strategies for Plug-In Hybrid Electric Vehicles

2009-09-13
2009-24-0071
Plug-In Hybrid Vehicles (PHEVs) represent the middle point between Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs), thus combining benefits of the two architectures. PHEVs can achieve very high fuel economy while preserving full functionality of hybrids - long driving range, easy refueling, lower emissions etc. These advantages come at an expense of added complexity in terms of available fuel. The PHEV battery is recharged both though regenerative braking and directly by the grid thus adding extra dimension to the control problem. Along with the minimization of the fuel consumption, the amount of electricity taken from the power grid should be also considered, therefore the electricity generation mix and price become additional parameters that should be included in the cost function.
Technical Paper

Application of Model-Based Design Techniques for the Control Development and Optimization of a Hybrid-Electric Vehicle

2009-04-20
2009-01-0143
Model-based design is a collection of practices in which a system model is at the center of the development process, from requirements definition and system design to implementation and testing. This approach provides a number of benefits such as reducing development time and cost, improving product quality, and generating a more reliable final product through the use of computer models for system verification and testing. Model-based design is particularly useful in automotive control applications where ease of calibration and reliability are critical parameters. A novel application of the model-based design approach is demonstrated by The Ohio State University (OSU) student team as part of the Challenge X advanced vehicle development competition. In 2008, the team participated in the final year of the competition with a highly refined hybrid-electric vehicle (HEV) that uses a through-the-road parallel architecture.
Technical Paper

An Improved Design of a Vehicle Based Off-Road Terrain Profile Measurement System

2008-10-07
2008-01-2655
This paper discusses an improved design of a vehicle-based mobile off-road terrain profile measurement system. The proposed system includes an apparatus of sensors and on-board data acquisition hardware, equipped on a platform vehicle used to measure and record the relevant data while the vehicle travels through the off-road or terrain surface to be surveyed. A unique post-processing algorithm is then used to derive the elevation profile based on the collected data. The derived elevation profile data could be used to characterize the roughness of an off-road testing course or perform a general geographical survey or mapping. The major technical issue addressed in this system is to eliminate the effect of platform vehicle vibration on sensor measurement which if left unaddressed will result in large measurement error due to high amplitude pitch and roll movements of the platform vehicle.
Technical Paper

Design and Control of Commuter Plug-In FC Hybrid Vehicle

2007-09-16
2007-24-0079
Strong dependency on crude oil in most areas of modern transportation needs lead into a significant consumption of petroleum resources over many decades. In order to maximize the effective use of remaining resources, various types of powertrain topologies, such as hybrid configurations among fuel cell, electric battery as well as conventional IC engine, have been proposed and tested out for number of vehicle classes including a personal commuting vehicle. In this paper the vehicle parameters are based on a typical commercial sub-compact vehicle (FIAT Panda) and energy needs are estimated on the sized powertrain. The main control approach is divided in two categories: off-line global optimization with dynamic programming (DP, not implementable in real time), and on-line Proportional and Feed-Forward with PI controllers. The proposed control approaches are developed both for charge-sustaining and charge-depleting mode and sample results are shown and compared.
Technical Paper

Island Concept EVT

2006-10-16
2006-01-3260
This paper presents an all-wheel-drive (AWD) hybrid electric vehicle (HEV) design approach for extreme off-road applications. The paper focuses on the powertrain design, modeling, simulation, and performance analysis. Since this project focuses on a military-type application, the powertrain is designed to enhance crew survivability and provide several different modes of limp-home operation by utilizing a new vehicle topology -herein referred to as the island topology. This topology consists of designing the vehicle such that the powertrain and other equipment and subsystems surround the crew compartment to provide a high level of protection against munitions and other harmful ordnance. Thus, in the event of an external shield penetration, the crew compartment remains protected by the surrounding equipment - which serves as a secondary shield.
Technical Paper

A U.S. Perspective of Plug-in Hybrids and an Example of Sizing Study, Prototype Development and Validation of Hybridized FC-NEV with Bi-directional Grid Inter-connect for Sustainable Local Transportation

2006-09-14
2006-01-3001
There is increasing interest in the use of alternative fuels for transportation, due to the increasing cost of petroleum based fuels. One possible alternative to the use of petroleum for transportation is to use electric grid power. This paper explores a possible design solution based on a plug-in fuel cell hybrid. A scaled down version of FC-HEV that is applicable to this concept, has been implemented as a proof of concept with fast prototyping toolkits, including a 32 bit micro processor, Matlab/Simulink software and an embedded system development kit. The resulting prototype vehicle demonstrated a high gasoline equivalent MPG as well as a successful functionality of micro grid power generation.
Technical Paper

The Impact of Worn Shocks on Vehicle Handling and Stability

2006-04-03
2006-01-0563
The intent of this research is to understand the effects worn dampers have on vehicle stability and safety through dynamic model simulation. Dampers, an integral component of a vehicle's suspension system, play an important role in isolating road disturbances from the driver by controlling the motions of the sprung and unsprung masses. This paper will show that a decrease in damping leads to excessive body motions and a potentially unstable vehicle. The concept of poor damping affecting vehicle stability is well established through linear models. The next step is to extend this concept for non-linear models. This is accomplished through creating a vehicle simulation model and executing several driving maneuvers with various damper characteristics. The damper models used in this study are based on splines representing peak force versus velocity relationships.
Technical Paper

Development and Application of Military Wheeled Vehicle Driving Cycle Generator

2005-11-01
2005-01-3560
A methodology has been developed to generate military vehicle driving cycles for use in vehicle simulation models. This methodology is based upon the mission profile for a vehicle, which is typically given within a vehicle's specifications and lists the types of terrains that the vehicle is likely to encounter. A simplistic vehicle powertrain and road load model and the Bekker vehicle-soil interaction model are used to estimate the vehicle performance over each type of terrain. Two types of driving cycles are generated within a Graphical User Interface developed within MATLAB using the results of the vehicle models: Linear modes driving cycles, and Real-world driving cycles.
Technical Paper

Modeling, Simulation and Design Space Exploration of a MTV 5.0 Ton Cargo Truck in MSC-ADAMS

2005-04-11
2005-01-0938
This paper presents the results of a design space exploration based on the simulations of the MTV (Medium Tactical Vehicle) 5.0 Ton Cargo Truck using MSC-ADAMS (Automatic Dynamic Analysis of Mechanical System). Design space study is conducted using ADAMS/Car and ADAMS/Insight to consider parametric design changes in suspension and the tires of the cargo truck. The methodology uses an industry acknowledged multibody dynamics simulation software (ADAMS) for the modeling of the cargo truck and a flexible optimization architecture to explore the design space. This research is a part of the work done for the U.S. Army TACOM (Tank Automotive and Armaments Command) at the Center for Automotive Research, The Ohio State University.
X