Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Runtime Safety Assurance of Autonomous Last-Mile Delivery Vehicles in Urban-like Environment

2024-07-02
2024-01-2991
The conventional process of last-mile delivery logistics often leads to safety problems for road users and a high level of environmental pollution. Delivery drivers must deal with frequent stops, search for a convenient parking spot and sometimes navigate through the narrow streets causing traffic congestion and possibly safety issues for the ego vehicle as well as for other traffic participants. This process is not only time consuming but also environmentally impactful, especially in low-emission zones where prolonged vehicle idling can lead to air pollution and to high operational costs. To overcome these challenges, a reliable system is required that not only ensures the flexible, safe and smooth delivery of goods but also cuts the costs and meets the delivery target.
Technical Paper

Environment-Adaptive Localization based on GNSS, Odometry and LiDAR Systems

2024-07-02
2024-01-2986
In the evolving landscape of automated driving systems, the critical role of vehicle localization within the autonomous driving stack is increasingly evident. Traditional reliance on Global Navigation Satellite Systems (GNSS) proves to be inadequate, especially in urban areas where signal obstruction and multipath effects degrade accuracy. Addressing this challenge, this paper details the enhancement of a localization system for autonomous public transport vehicles, focusing on mitigating GNSS errors through the integration of a LiDAR sensor. The approach involves creating a 3D map using the factor graph-based LIO-SAM algorithm based on GNSS, vehicle odometry, IMU and LiDAR data. The algorithm is adapted to the use-case by adding a velocity factor and altitude data from a Digital Terrain model. Based on the map a state estimator is proposed, which combines high-frequency LiDAR odometry based on FAST-LIO with low-frequency absolute multiscale ICP-based LiDAR position estimation.
Technical Paper

Enabling the security of global time in software-defined vehicles (SGTS, MACsec)

2024-07-02
2024-01-2978
The global time that is propagated and synchronized in the vehicle E/E architecture is used in safety-critical, security-critical, and time-critical applications (e.g., driver assistance functions, intrusion detection system, vehicle diagnostics, external device authentication during vehicle diagnostics, vehicle-to-grid and so on). The cybersecurity attacks targeting the global time result in false time, accuracy degradation, and denial of service as stated in IETF RFC 7384. These failures reduce the vehicle availability, robustness, and safety of the road user. IEEE 1588 lists four mechanisms (integrated security mechanism, external security mechanism, architectural solution, and monitoring & management) to secure the global time. AUTOSAR defines the architecture and detailed specifications for the integrated security mechanism "Secured Global Time Synchronization (SGTS)" to secure the global time on automotive networks (CAN, FlexRay, Ethernet).
Technical Paper

Graph based cooperation strategies for automated vehicles in mixed traffic

2024-07-02
2024-01-2982
In the context of urban smart mobility, vehicles have to communicate with each other, surrounding infrastructure, and other traffic participants. By using Vehicle2X communication, it is possible to exchange the vehicles’ position, driving dynamics data, or driving intention. This concept yields the use for cooperative driving in urban environments. Based on current V2X-communication standards, a methodology for cooperative driving of automated vehicles in mixed traffic scenarios is presented. Initially, all communication participants communicate their dynamic data and planned trajectory, based on which a prioritization is calculated. Therefore, a decentralized cooperation algorithm is introduced. The approach is that every traffic scenario is translatable to a directed graph, based in which a solution for the cooperation problem is computed via an optimization algorithm.
Technical Paper

Analysis of human driving behavior with focus on vehicle lateral control

2024-07-02
2024-01-2997
The optimization and further development of automated driving functions offers great potential to relieve the driver in various driving situations and increase road safety. Simulative testing in particular is an indispensable tool in this process, allowing conclusions to be drawn about the design of automated driving functions at a very early stage of development. In this context, the use of driving simulators provides support so that the driving functions of tomorrow can be experienced in a very safe and reproducible environment. The focus of the acceptance and optimization of automated driving functions is particularly on vehicle lateral control functions. As part of this paper, a test person study was carried out regarding manual vehicle lateral control on the dynamic vehicle road simulator at the Institute of Automotive Engineering.
Technical Paper

On Improving CLEAN-SC Maps in The Wind Tunnel

2024-06-12
2024-01-2936
When travelling in an open-jet wind tunnel, the path of an acoustic wave is affected by the flow causing a shift of source positions in acoustical maps of phased arrays outside the flow. The well-known approach of Amiet attempts to correct for this effect by computing travel times between microphones and map points based on the assumption that the boundary layer of the flow, the so-called shear-layer, is infinitely thin and refracts the acoustical ray in a conceptually analogy to optics. However, in reality, the turbulent nature of both the not-so thin shear-layer and the acoustic emission process itself causes an additional smearing of sources in acoustic maps, which in turn causes deconvolution methods based on these maps - the most prominent example being CLEAN-SC - to produce certain ring effects, so-called halos, around sources.
Technical Paper

Bushing Stiffness Optimization Method for NVH Improvement Using Blocked Force and Energy-Based Index in Suspension System

2024-06-12
2024-01-2921
Reductions in powertrain noise have led to an increased proportion of road noise, prompting various studies aimed at mitigating it. Road excitation primarily traverses through the vehicle suspension system, necessitating careful optimization of the characteristics of bushings at connection points. However, optimizing at the vehicle assembly stage is both time-consuming and costly. Therefore, it is essential to proceed with optimization at the subsystem level using appropriate objective functions. In this study, the blocked force and energy-based index derived from complex power were used to optimize the NVH performance. Calculating the complex power in each bushing enables computing the power flow, thereby providing a basis for evaluating the NVH performance. Through stiffness injection, the frequency response functions (FRF) of the system can be predicted according to arbitrary changes in the bushing stiffness.
Technical Paper

A Low-Cost System for Road Induced Tire Cavity Noise Control (RTNC)

2024-06-12
2024-01-2961
The transition from ICE to electric power trains in new vehicles along with the application of advanced active and passive noise reduction solutions has intensified the perception of noise sources not directly linked to the propulsion system. This includes road noise as amplified by the tire cavity resonance. This resonance mainly depends on tire geometry, air temperature inside the tire and vehicle speed and is increasingly audible for larger wheels and heavier vehicles, as they are typical for current electrical SUV designs. Active technologies can be applied to significantly reduce narrow band tire cavity noise with low costs and minimal weight increase. Like ANC systems for ICE powertrains, they make use of the audio system in the vehicle. In this paper, a novel low-cost system for road induced tire cavity noise control (RTNC) is presented that reduces the tire cavity resonance noise inside a car cabin.
Technical Paper

Advance simulation method for aero-acoustic vehicle design

2024-06-12
2024-01-2938
With the electrification of powertrains, the noise level inside vehicles reach high levels of silence. The dominant engine noise found in traditional vehicles is now replaced by other sources of noise such as rolling noise and aeroacoustic noise. These noises are encountered during driving on roads and highways and can cause significant fatigue during long journeys. Regarding aeroacoustic phenomena, the noise transmitted into the cabin is the result of both turbulent pressure and acoustic pressure created by the airflow. Even though it is lower in level, the acoustic pressure induces most of the noise perceived by the occupants. Its wavelength is closer to the characteristic vibration wavelengths of the glass, making its propagation more efficient through the vehicle's windows. The accurate modeling of these phenomena requires the coupling of high-frequency computational fluid dynamics (CFD) simulations and vibro-acoustic simulations.
Technical Paper

Electric Vehicle Ride & Vibrations Analysis - Full electric vehicle MBD model development for NVH studies

2024-06-12
2024-01-2918
The NVH performance of electric vehicles is a key indicator of vehicle quality, being the structure-borne transmission predominating at low frequencies. Many issues are typically generated by high vibrations, transmitted through different paths, and then radiated acoustically into the cabin. A combined analysis, with both finite-element and multi-body models, enables to predict the interior vehicle noise and vibration earlier in the development phases, to reduce the development time and moreover to optimize components with an increased efficiency level. In the present work, a simulation of a Hyundai electric vehicle has been performed in IDIADA VPG with a full vehicle multibody (MBD) model, followed by vibration/acoustic simulations with a Finite elements model (FEM) in MSC. Nastran to analyze the comfort. Firstly, a full vehicle MBD model has been developed in MSC. ADAMS/Car including representative flexible bodies (generated from FEM part models).
Technical Paper

New Equivalent Static Load (ESL) Creation Procedure for Complete Vehicle

2024-06-12
2024-01-2944
By analyzing the dynamic distortion in all body closure openings in a complete vehicle, a better understanding of the body characteristics can be achieved compared to traditional static load cases such as static torsional body stiffness. This is particularly relevant for non-traditional vehicle layouts and electric vehicle architectures. The body response is measured with the so-called Multi Stethoscope (MSS) when driving a vehicle on a rough pavé road (cobble stone). The MSS is measuring the distortion in each opening in two diagonals. During the virtual development, the distortion is described by the relative displacement in diagonal direction in time domain using a modal transient analysis. The results are shown as Opening Distortion Fingerprint ODF and used as assessment criteria within Solidity and Perceived Quality. By applying the Principal Component Analysis (PCA) on the time history of the distortion, a Dominant Distortion Pattern (DDP) can be identified.
Technical Paper

A Study on RANC Technique for Server-based Control Filter Optimization

2024-06-12
2024-01-2960
Broadband active noise control algorithms require high-performance so multi-channel control to ensure high performance, which results in very high computational power and expensive DSP. When the control filter update part need a huge computational power of the algorithm is separated and calculated by the server, it is possible to reduce cost by using a low-cost DSP in a local vehicle, and a performance improvement algorithm requiring a high computational power can be applied to the server. In order to achieve the above goal, this study analyzed the maximum delay time when communication speed is low and studied response measures to ensure data integrity at the receiving location considering situations where communication speed delay and data errors occur.
Technical Paper

Adaptive Inverse Control of Vibration Exciter for Tracking Target Acceleration of a Car Subsystem

2024-06-12
2024-01-2920
This research aims to develop an inverse control method capable of adaptively simulating dynamic models of car subsystems in the rig-test condition. Accurate simulation of the actual vibration conditions is one of the most crucial factors in realizing reliable rig-test platforms. However, most typical rig tests are conducted under simple random or harmonic sweep conditions. Moreover, the conventional test methods are hard to directly adapt to the actual vibration conditions when switching the dynamic characteristics of the subsystem in the rig test. In the present work, we developed an inverse controller to adaptively control the vibration exciter referring to the target vibration signal. An adaptive LMS filter, employed for the control algorithm, updated the filter weights in real time by referring to the target and the measured acceleration signals.
Technical Paper

Generating Reduced-Order Image Data and Detecting Defect Map on Structural Components using Ultrasonic Guided Wave Scan

2024-06-01
2024-26-0416
The paper presents a theoretical framework for the detection and first-level preliminary identification of potential defects on aero-structure components while employing ultrasonic guided wave based structural health monitoring strategies, systems and tools. In particular, we focus our study on ground inspection using laser-Doppler scan of surface velocity field, which can also be partly reconstructed or monitored using point sensors and actuators on-board structurally integrated. Using direct wave field data, we first question the detectability of potential defects of unknown location, size, and detailed features. Defects could be manufacturing defects or variations, which may be acceptable from design and qualification standpoint; however, those may cause significant background signal artifacts in differentiating structure progressive damage or sudden failure like impact-induced damage and fracture.
Technical Paper

Configuration and Design of Mobile Checkout System for Ground Testing of Winged Body Reusable Launch Vehicle

2024-06-01
2024-26-0454
Abstract Unlike conventional launch vehicles the winged body reusable launch vehicle needs to be tested and evaluated for its functionality during the pre-flight preparation at the runway. The ground based checkout systems for the avionics and actuators performance testing during pre-flight evaluation and actuation are not designed for rapid movement. The new kind of launch vehicle with conventional rocket motor first-stage and winged body upper-stage demands the system testing at Launchpad and at runway. In the developmental flights of the winged body part of the vehicle, the pre-flight testing needs to be carried out extensively at runway. The safety protocol forbids the permanent structure for hosting the checkout system near runway. The alternative is the development of a rapidly deployable and removable checkout system. A design methodology adopting conventional industrial instrumentation systems and maintaining mobility is presented.
Technical Paper

Design and Development of Terminal Velocity Measurement System for Descending Modules

2024-06-01
2024-26-0438
Gaganyaan programme is India's prestigious human space exploration endeavour. During the re-entry of the spacecraft, achieving the minimum terminal velocity is paramount to ensure the crew's safety upon landing. Therefore, acquiring accurate in-flight velocity data is essential for comprehensively understanding the landing dynamics and facilitating post-flight data analysis and validation. Moreover, terminal velocity plays a pivotal role in the qualification of parachute systems during platform-drop tests where the objective is to minimize the terminal velocity for safe impact. Terminal velocity also serves as a critical design parameter for the crew seat attenuation system. In addition to terminal velocity, it is equally necessary to characterize the horizontal velocities acting on the decelerating body due to various factors such as parachute sway and wind drift. This data also plays a central role in refining our systems for future enhancements.
Technical Paper

Consensus Based Air Transport System for Strategic Deconfliction for Urban Air Mobility

2024-06-01
2024-26-0405
Advanced Air Mobility (AAM) envisions heterogenous airborne entities like crewed and uncrewed passenger and cargo vehicles within, and between urban and rural environment. To achieve this, a paradigm shift to a cooperative operating environment similar to Extensible Traffic Management (xTM) is needed. This requires the blending of Traditional Air Traffic Services (ATS) with the new generation AAM vehicles having their unique flight dynamics and handling characteristics. A hybrid environment needs to be established with enhanced shared situational awareness for all stakeholders, enabling equitable airspace access, minimizing risk, optimized airspace use, and providing flexible and adaptable airspace rules. This paper introduces a novel concept of distributed airspace management which would be apt for all kinds of operational scenarios perceived for AAM. The proposal is centered around the efficiency and safety in air space management being achieved by self-discipline.
Technical Paper

High Frequency Unsteady Pressure Measurement System for Aerodynamic Characterization in Launch Vehicles

2024-06-01
2024-26-0432
Unsteady pressure measurements are crucial for understanding dynamic pressure distribution changes in fluid flow fields and over object surfaces, revealing insights into complex flow phenomena induced by shock waves, vortices, boundary layer interactions, and flow separation. While ground-based wind tunnel tests have conventionally provided these insights, this paper presents an on-board system for real-time unsteady pressure data acquisition. The system's main challenge is accurately resolving high-frequency static and dynamic pressure variations over very high base pressure values. To meet this challenge, the paper highlights the importance of sigma-delta Analog-to-Digital Converters (ADCs) due to their high resolution, oversampling techniques, noise filtering capabilities, and wide dynamic range. These ADCs seamlessly integrate with digital systems, ensuring reliable real-time pressure data acquisition during launch and flight operations.
X